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In Memoriam
Eli Sternberg

Eli Sternberg, perhaps the best known scholar in the field of
elasticity during most of the past h~lf-century, died suddenly
in Pasadena, California, on October 8, 1988, shortly before
his seventy-first birthday.

Sternberg was born in Vienna in 1917. He left Europe for
the United States during the late 1930s, taking his bachelor's
degree in civil engineering at North Carolina State University
in 1941. After receiving the Ph.D. in mechanics from lIIinois
Institute of Technology in 1945, he remained at that institu
tion as a member of the faculty, becoming a full professor in
1951. He left LLT. in 1956 to join Brown University's Divi
sion of Applied Mathematics, which had recently been
developed by William Prager into one of the world's foremost
centers of activity in continuum mechanics. Upon returning
from sabbatical leave in Japan in 1964, Sternberg joined the
faculty at the California Institute of Technology, where he
spent the rest of his career, becoming Professor of Mechanics,
Emeritus, in July, 1988. In addition to his sabbatical stay in
Japan, he also'spent academic years in the Netherlands and in
Chile.

After his dissertation on elastic fields with linear kinematics
but nonlinear stress-strain relations, Sternberg and his Ph.D.
research adviser M. A. Sadowsky wrote several papers in the
late 1940s on three-dimensional stress concentration at an
ellipsoidal cavity. These papers have remained of great interest
because of their relevance to issues of interest in fracture
mechanics.

A 1952 paper with F. Rosenthal devoted to the elastic sphere
under concentrated loads marked the beginning of Sternberg's
interest in singular problems in elasticity, an interest that was
to persist in a variety of contexts throughout. his career. His
work on concentrated loads was aimed primarily at clarifying
the formulation of such problems, with special concern for
questions of uniqueness.

One of the best known early papers of Sternberg, On Saint
Venant's Principle, appeared in 1954; in it, he gave
mathematical form and proof to the version of the principle
put forward shortly before by von Mises. This, too, was a sub
ject to which Sternberg would return in later years.

Elastodynamics occupied Sternberg at various stages of his
career. His paper On the Integration of the Equations of Mo
tion in the Classical Theory of Elasticity, concerned with
representations of the elastodynamic displacement field in
terms of potentials, remains the definitive work on this subject
today. Indeed, Sternberg's fascination with questions about
the completeness of the many classes of displacement and
stress potentials in the classical linear theory of elasticity per
sisted throughout his career.

Together with some of his Ph.D. students, Sternberg under
took sustained studies in thermoelasticity in the late 1950s and
viscoelasticity in the 1960s. As in other areas of his research,
here, too, he was concerned both with issues at the foundation
of his subjects as well as with applications to specific problems
of engineering interest.

In later years, Sternberg's interest turned primarily to the
theory of finite elasticity,. where he studied the effect of
nonlinearity on singular elastostatic fields, as well as conserva
tion laws that follow from variational principles.

A noteworthy aspect of Sternberg's career was the presence
of several sustained collaborations, especially those with
M. E. Gurtin (who was a Ph. D. student of Sternberg's), with
J. K. Knowles and with R. Muki. The first of these was with

Journal of Applied Mechanics

Eli Sternberg

Muki; initially, it was primarily concerned with thermal stress
problems. Later, they explored the effect of couple stresses on
singular fields, while later still, their interests turned to load
transfer problems in fiber-reinforced composites. Shortly

.after the collaboration with Muki began, Gurtin and Stern-
berg undertook joint research over a period of several years on
a variety of topics, including fundamental theorems in linear
elastostatics and elastodynamics, thermoelasticity, and
viscoelasticity. The collaborations with Muki and with Gurtin
began at Brown; the one with Knowles, devoted primarily to
singular problems and problems involving loss of equilibrium
ellipticity in finite elasticity, began shortly after Sternberg
came to Caltech. It was to last for nearly twenty-five years.

Sternberg's scholarly achievements were recognized through
several prestigious awards. He held Fulbright and Gug
genheim Fellowships, he was a Fellow of the American
Academy of Arts and Sciences, and he was elected to member
ship in both the National Academy of Engineering and the Na
tional Academy of Sciences. He held honorary degrees from
North Carolina State University and The Technion in Israel.
He received the Timoshenko Medal of the American Society
of Mechanical Engineers in 1985.

Sternberg was a superb teacher whose lectures, like his
research writings, were distinguished by uncommon clarity,
conviction and integrity. His influence on students-even
those who were not his research students-was enormous.
This enviable academic legacy is aptly illustrated by a quota
tion taken from the acknowledgment in a recent Ph.D. disser
tation written by an exceptionally able Caltech Ph.D. student
for whom the research supervisor was not Sternberg: after
expressing appreciation to the research mentor, the
acknowledgment goes on to thank"... Professor Eli Stern
berg, whose course in elasticity caused me to start thinking
about mechanics in an entirely new way."

James K. Knowles
California Institute of Technology

JUNE 1989, Vol. 56/239
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The Sternberg-Koiter Conclusion 
and Other Anomalies of the 
Concentrated Couple 
A notable conclusion reached by Sternberg and Koiter 30 years ago is that an elastic 
wedge loaded by a concentrated couple at its vertex remains a well-posed elasticity 
problem only as long as the wedge does not degenerate into a reentrant corner. A 
closely related problem is that of a concentrated couple approaching the tip of a 
crack. It is shown in this article that the corresponding limits in the stress fields do 
not exist, but that the Bueckner weight function is obtained by appropriately 
diminishing the magnitude of the couple. It is also shown that the elastic fields, 
when a concentrated couple approaches an interface between two materials, depend 
on the direction from which the interface is approached. Moreover, the elastic 
wedge embedded in another material is discussed. 

Dedication: Eli Sternberg died on the 8th of October 1988. He was the eminent 
American elastician. As we mourn his death, we cherish remembering him as a scien
tist and a unique man. We dedicate this paper to his memory. 

1 Introduction 

We discuss a plane elasticity problem that by now has a long 
history. The solution for the infinite wedge loaded at its vertex 
by a concentrated couple was given by Carothers (1912) more 
than 75 years ago, and apparently rediscovered a decade later 
by Inglis (1922). In terms of an Airy stress function it is 

<£= (d cos 27 — sin 20 J (1) 

D = sin 27 - 27 cos 27 (2) 

with the symbols used shown in Fig. 1. The corresponding 
displacement and stress components are 

M 
2/*" r= - T7T- ( K + l)sin20 

2ixue = -

°n> = 

M 

~2Dr 

M 

~D~rT 

IDr 

(2 cos 2 7 + (K-1)COS 20) 

M 

'DrT 2sin20 

(cos 27 - cos 2d) 

(3) 

(4) 

(5) 

(6) 

(7) 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED 

MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
Applied Mechanics Division, March 14, 1988; final revision, August 5, 1988. 
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where JX is the shear modulus, and, with v denoting Poisson's 
ratio, K = 3 - 4v for plane strain and K = (3 - v)/{\ + v) for plane 
stress. It was noted eventually by Fillunger (1930) that all is 
not well with the Carothers solution, because D = 0 and the 
elastic fields explode for the special angle 7* = 0.7157r= 128.7 
deg which still falls within the admissible range 0<7<7r . 

The Carothers solution satisfies the vulgar formulation of 
problems of this type: The tractions vanish on both flanks of 

Fig. 1 Wedge subjected to a concentrated couple 

T r a n s a c t i o n s of the A S M E 
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the wedge, and their resultant on any simple contour around 
the vertex is equipollent to a couple with the moment M. 
Moreover, the stresses are proportional to r~2 as they should 
be according to dimensional analysis, since there is no 
characteristic length in the problem. However, nothing is said 
in this kind of formulation what a concentration couple ac
tually is. It also may be noted that the two biharmonic func
tions 6 and sin20 in (1) correspond, respectively, to a concen
trated moment and a center of shear acting at an interior 
point. For 0<y<ir/2, the shear tractions on a circle centered 
at the vertex of the wedge are of the same sign. In contrast for 
7r/2<7<7r, the center of shear causes a twofold reversal in 
sign of the shear tractions which makes the Carothers solution 
suspect also on physical grounds when the wedge becomes a 
reentrant corner.1 

In the late 1950s, the dilemma noted by Fillunger was con
sidered by Sternberg and Koiter (1958) from the point of view 
that the concentrated couple applied at the vertex should be a 
meaningful limit of suitable distributed tractions acting on the 
flanks of the wedge. Their conclusion, based on a detailed 
analysis, was that the Carothers solution is valid and that the 
notion of a concentrated couple applied at the vertex remains 
meaningful only for wedges up to half plane, or 0 < Y < T T / 2 , 
and that there is a mathematical breakdown for reentrant cor
ners (7r/2<7<7r). 

Since the Sternberg-Koiter conclusion contradicts the no
tion of perfect order in elasticity, it is not surprising that it led 
to an extensive discussion2 and several attempts to explain and 
possibly mend the situation. We find it impossible to sum
marize the follow-up papers in detail, and suggest that the in
terested reader consult the following articles: Sonntag 
(1961a)—a photoelastic experiment, reentrant corner with the 
critical angle 7 = 0.715 7r, couple applied by twisting aglued-in 
dowel, no signs of anything peculiar happening; Sonntag 
(1961b)—more photoelastic experiments for other wedge 
angles and some analytical considerations for 7 = TT/2 
necessitated by the load transmitting dowel, no indication of 
the twofold sign reversal in the shear tractions predicted by the 
Carothers solution; Neuber (1963)—a massive article attemp
ting to mend the Carothers solution by applying the couple 
through a dowel of finite size, succeeds in eliminating the 
twofold reversal in the sign of shear tractions, but throws no 
light on the dilemma explored by Sternberg and Koiter; 
Buchwald (1965)—analysis of the eigenfunction expansion for 
the wedge, proposed that the solution for y > TT/2 should con
tain several eigenfunctions even if their fields show a slow 
decay at infinity, the point that a concentrated couple applied 
at the vertex must be a limit of a well-posed problem is missed; 
Barenblatt and Zeldovich (1972) and Barenblatt (1979)—con
siderations based on self-similarity confirming the Sternberg-
Koiter results; Budiansky and Carrier (1973)—wedge loaded 
through a dowel, shown that satisfactory results can be achiev
ed for the stiffness of the wedge by adding to the Carothers 
solution eigenfunctions for the wedge with free flanks; and 
Ting (1985)—attempt to mend the Carothers solution by in
troducing additional eigenfunctions and using the traditional 
formulation. 

Two points may be made in connection with the Sternberg-
Koiter conclusion: 

(1) The singularity induced by a concentrated action is very 
often a physically meaningful elasticity solution for the un
bounded domain. But this is not an a priori requirement on 
the singularity, and there are examples to the contrary. For in
stance, the singularity for a wedge disclination is given by the 
Airy stress function (Dundurs, 1969) 

This observation is due to R. D. Mindlin (see the discussion of the Sternberg-
Koiter paper, p. 473). 

2 Journal of Applied Mechanics, Vol. 26, 1959, pp. 472-474. 

Fig. 2 Concentrated force and couple in the vicinity of a crack tip 

<>= / * rHogr (8) 
ir(K+ 1) 

where GO is the angle of the wedge-shaped material cut out 
before closing the gap. The stresses corresponding to (8) 
become logarithmically infinite at large distances from the 
singular point, and (8) by itself is in no acceptable sense a solu
tion to any problem. It is intriguing to note in this connection 
that nature seems to know about this "result," and that 
disclinations in crystalline solids are observed only when the 
body has a dimension that is not extremely large in com
parison to the atomic spacing (whiskers, dust-like particles). 
Although Sternberg and Koiter (1958) do not touch directly 
upon the question whether the concentrated couple at a reen
trant corner could be made meaningful in this narrower sense, 
their analysis leaves little room for optimism. 

(2) The line of reasoning followed by Sternberg and his col
laborators (Sternberg and Rosenthal, 1952; Sternberg and 
Eubanks, 1955) in dealing with singularities induced by con
centrated actions applied to the surface of the body is that the 
elastic fields must be meaningful limits of distributed surface 
tractions. This approach cannot be contested. However, if the 
singularity is to be completely satisfactory, one should also 
obtain the same result when the concentrated action ap
proaches the surface from an interior point of the body. 

Both points are pursued in this paper by considering a con
centrated couple near the tip of a crack which, in a sense, cor
responds to a wedge angle 7 = v. This problem has the attrac
tion that it can be solved in closed form, and the limit of the 
couple approaching the tip of the crack explored in detail. It 
also seems intuitively that the problem of a crack of finite 
length should somehow be mathematically more stable than a 
cut running to infinity or, for that matter, the general shape of 
a reentrant corner. 

The crack problems in this paper are solved using a for
mulation in terms of distributed dislocations. We recall for 
this purpose that, if edge dislocations are distributed on the x-
axis, the induced traction components on y = 0 are (Mura, 
1982) 

IT(K+ 1) J -°° £— x 

TT(K+1) J-00 %-x 

where Bx and By are the densities {Bx corresponds to a glide 
array with Burgers vectors in the x-direction, and By to a climb 
array with Burgers vectors in the ^-direction), and the 
superscript D is added to emphasize that these stress com
ponents are due to a dislocation distribution. 

2 Concentrated Couple and a Crack 

For mathematical simplicity we place the concentrated cou
ple in line of the crack (see Fig. 2) and consider only the stress 
component oxy (x,Q). The concentrated couple applied at the 
interior point (Timoshenko and Goodier, 1970) gives the trac
tion components 
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',(xfi)=-
M 1 

<jyi(xfi) = 0. (11) 2TT (x-b)2 

Simulating the crack as distributed glide dislocations on 
Ixl <« , the total stress is ax

4
y(xfi) + axy(xfi), and the require

ment that the faces of the crack be free of tractions gives im
mediately the integral equation 

r Bx($)dk M(K+\) 1 , , 
I *^' \ ^ L \x\<a<b (12) J-a %-X 4fl 

with the side condition 

(x-b)2 

Bx(x)dx = 0. (13) 

The solution of this system obtained by a well-known ap
proach (Muskhelishvili, 1953) is 

Bx(x) = 

M( K +1) bx-a2 

4fi ( f t 2 - a 2 ) U 2 ( a 2 - x 2 ) y 2 ( b - x ) 2 ' 
\x\ <a<b. 

(14) 

Finally, backsubstituting (14) into (9) and adding (11) yields 
the total stress 

axy (xfi) = 

M (bx—a2)sgnxH(\x\—a) 
\x\ << (15) 

lit (b2-a2y/2(x2-a2)l/2(x-b)2 ' 

Before considering the limit ft—a, it may be noted that the 
shear stress in the plane of the crack given by (15) has precisely 
the features that should be anticipated. In the vicinity of 
x = a+, 

oxy(xfi)~ 2 7 2l/\b2~a2y/2(b-a)(x-ay>2 ° 6 ) 

showing the customary square-root singularity at a crack tip. 
In the vicinity of x = b, 

°^xfi)~-^lx^bT (17) 

which is the same as (11), and corresponds to the singularity of 
a concentrated couple. In the vicinity of x = + oo, 

M b 
oxy(xfi)~-~ {b2_a2)lnx2 (18) 

The decay of stresses as r~2 far away is typical of both a crack 
and the concentrated couple. However, it is notable that (18) 
contains the magnification factor (b2-a2)~~U2. 

It is obvious from (14) and (15) that the limit ft—a does not 
exist as both the dislocation density and the shear stress simply 
become infinite. This in a sense confirms the Sternberg-Koiter 
conclusion, and also shows that a singularity for a concen
trated couple applied at the tip of a cut cannot be defined in 
some weaker sense. 

Finite limits for ft—a can be achieved, however, by 
diminishing the magnitude of the couple as it approaches the 
tip by taking M(b2-a2Yxn = Q = const. Then from (14) and 
(15) 

BXW> 
<2(«+i) 

4̂ i (a + xy/2(a-xy 
x<a (19) 

which no longer satisfies (13), meaning that the crack is 
dislocated, and 

axy(xfi) = 
Q a sgn x H( \x\ — a) 

\x\ <c (20) 
2ir (x + a)U2(x-a)V2 

The presence of the r~i/2 type singularity at the right crack tip 
suggests that (19) and (20) correspond to the Bueckner weight 
function in fracture mechanics (Bueckner 1971; Rice 1972; 

Paris, McMeeking, and Tada 1976). Indeed, this is ac
complished by setting Qfa/2S2 = BI[ in the Paris, McMeek
ing, and Tada paper. The r~V2 singularity in (20) is also ob
tained in the Mellin transform analyses of Sternberg and 
Koiter (1958), and Barenblatt (1979) if a fractional power mo
ment, but not the ordinary moment, is set equal to a constant. 
This is seen from equation (10.31) in Barenblatt's book, and 
equation (57) in the Sternberg-Koiter paper using the eigen
value X= - 1/2 for a crack. 

3 Concentrated Force and a Crack 

It is instructive to contrast the situation for the couple with 
that for a concentrated force (see Fig. 2). The force is taken in 
line with the crack, because the force perpendicular to the 
crack is less revealing. 

The force applied at an interior point gives the traction com
ponents (Timoshenko and Goodier, 1970) 

ap
xy (xfi) = 0, o* (xfi) = f ("~^ — l - - . (21) 

27T(K+1) x—b 
Cancelling these tractions on the faces of the crack by 
distributed dislocations, (10) gives immediately the integral 
equation 

T By(£)d£ _ P(K-1) 1 

J-o ij— x AJX b—x 

The solution of (22) satisfying the side condition 

[" By(x)dx = Q 

\x\ <a. (22) 

(23) 

BAx) = 
P(K-1) 

a2_x2)U2 L1 
4irji (a2-x2) 

(b-a2)y2 
2*y"-\ 

-x J' 
\x\ <a<b. (24) 

Now it is more interesting to compute axx (xfi). The concen
trated force by itself gives 

P(K + 3) 1 
<&(*.0) = (25) 

TT(K+ 1) J-a £— X 
(26) 

2TT(K+1) x - b 

The distributed dislocations give 

2ji [" Bytt)dl; 
T(K+\) 

Substituting (24) into (26) and adding the two contributions, 
the result is 

Pc l K— l r 
axx(xfi)= + 1 
" IT I x~b 2(«+l) L 

(b2-a2)W2l sgn x • 1 sgn A 

"J (x2-a2 x-b J (x2-a2)i/2 

In the vicinity x = a +, 

H( \x\ «)}, \x\«x>. (27) 

P(K-l) 

°^Xfi)~ 2 ^ " 0 c ' + l ) 1 1 b 
- ( b + a \ m 1 ] 

V b-a ) J (x-a) (x—a)1'2 

and it exhibits the customary singularity of a crack tip. In the 
vicinity x = ft, 

P ( K + 3 ) 1 
a„ (xfi) 

SE 

the first order 

(29) 
2TT(K+1) x - b 

which is the same as (25). In the vicinity x= + oo we have, to 
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Fig. 3 Concentrated couple in the vicinity of an interface 

oxx(x,0)~ 
P ( K + 3) 1 

(30) 
2TT(K+1) x 

and, in contrast to the couple, there is no magnification factor 
involved. 

Finally, in the limit b-~a, 

P(K-\) 1 , , 

By(x)=-± '-—2 j r ^ , lx l<a (31) 
* 4-irtJ, {al-xly'L 

P ( 1 P ( 1 
axx(x,0) = 

•K I x—a 
K - l sgn x H(\x\ - . . ) . IJCI <<» (32) 

2 ( K + 1 ) (x2-a2)l/2 

Now there are two singularities at the right crack tip. The 
dominant singularity corresponding to the first term in (32) is 
the same as in the Michell solution for the wedge with y = ir 
that is loaded by a concentrated force (Michell, 1901). The sec
ond term gives the weaker singularity of a crack tip. 

Thus there are no surprises when a concentrated force ap
proaches the tip of the crack, and the results have precisely the 
structure that would be anticipated intuitively. It should be 
noted that one should not attempt the limit 5—a in (28) 
because the asymptotic expression valid only in the vicinity of 
x = a precludes a change to the singularity in Michell's solution 
as the concentrated force approaches the crack tip. The proper 
limit sequence for the force approaching the crack tip is &—a 
in (27) and then x~a to explore the stresses near the crack tip. 

4 Concentrated Couple and a Bimaterial Interface 

The solution for a concentrated couple that is applied in the 
vicinity of a bonded bimaterial interface is known (Fukui, 
Dundurs, and Fukui, 1967). When the couple is applied at the 
point (c,0) (see Fig. 3), the Airy stress functions for the two 
regions are 

</>, = -

where 

M 

~2T ( . , -
a - 0 

1 + 0 L 
02 + sin202 - 2c • 

sin0, 

02 = 

/*2(*1 

ft>(«l 

/*2(*1 

M 

2TT 

+ 1 ) - M 

+ l) + /x 

- 1 ) - * * 

1 + a 

1 + 0 

l(«2 + 

l(«2 + 

l ( « 2 -

f) Ul 

1) 

1) 

1) 

(33) 

(34) 

(35) 
/*2(«1 + l) + /*l(«2 + l) 

It can be deduced from (33) and (34) (looking at Fig. 3 from 
behind, returning to dx and 02 as measured in Fig. 3, and 
noting that a changes to - a and 0 to - 0 upon interchange of 
materials) that when the couple is applied at the point ( - c,0), 
the Airy stress functions are 

Q m X 

M 
Ay 

M2> Kr Mi i ^1 

Fig. 4 Embedded wedge subjected to a concentrated couple 

M \-a 
</>i = - — -r-w- 82 (36) 

02 = 
M 

2ir 1 - 0 

{e2+^L[el+sin26l+2c^-]}. (37) 

Next, let the concentrated couples approach the interface 
(see Fig. 3). For approach from the left, the Airy stress func
tions are 

*>f = 
M 

2 x ( l - 0 ) 
( l - a ) 0 (38) 

* * • = • 

M 

bf = 
2TT(1+0) 

< K l + a - 2 0 ) 0 + (a-0)sm20!>. (39) 

ich from the right, the result is 

•{ (1 - a + 20)0 - (a - 0)sin20 }• (40) 

2 T T ( 1 - 0 ) 

In contrast, for approach from the right, the result is 

M 

M 
(l + a)0. 

2TT(1+0) 

The unexpected outcome is now that the elastic fields de
pend on the direction of approach (except when a = 0, or 
p.l = n2)- There is a way to explain this. The concentrated cou
ple at an interior point can be constructed by adding two force 
doublets with moment, which themselves are obtained by dif-
ferention with respect to the coordinates of the point of ap
plication (Timoshenko and Goodier, 1970). Although the 
resulting singularity has perfect axial symmetry, it apparently 
remembers that such an operation would give two different 
results if it were done directly at the interface. For n2 = 0, 0f 
yields the well-known result for a concentrated couple applied 
at a free boundary (Timoshenko and Goodier, 1970). The 
same is obtained from 4>k f ° r Mi =0> a n d there is evidently no 
difficulty with the free surface. 

It is also clear that the vulgar formulation can throw little 
light on this anomaly of the concentrated couple. Both 4>L and 
4>R, or for that matter, any linear combination of the form 
k(j>L + (1 - k)4>R satisfy it. 

Another consequence of this anomaly is that two concen
trated couples of same magnitude, but turning in opposite 
directions, do not cancel if they meet at the interface. Revers
ing the direction of the couple at ( -c ,0) in Fig. 3, and letting 
the two couples go to the interface, gives the Airy stress func
tions 
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M r 2B 1 ^ 

*' = -27(a-»lTqFfl-TTjH (42) 

M r 2/3 1 -) 
^ = - _ ( a - ^ - - _ _ t f _ _ _ s i n M ] (43) 

which correspond to a self-equilibrated singularity. It may be 
noted that the two opposite couples cancel for the special com
bination of materials with a = /3, or JX1 =p.2-

No anomalies of this kind are encountered with concen
trated forces, as is readily confirmed by using the Airy stress 
functions derived by Dundurs and Hetenyi (Dundurs and 
Hetenyi, 1961; Hetenyi and Dundurs, 1962). 

5 Embedded Wedge 

Suppose that an elastic wedge is embedded in another 
material (see Fig. 4), and the vertex in the two materials is 
loaded by a concentrated couple. Since the special case of 
identical materials is well posed, a natural question is whether 
the vulgar formulation would yield acceptable results at least 
for small mismatches in the elastic constants of the two 
materials. 

The only biharmonic functions that give stresses propor
tional to r~2, as predicted by dimensional analysis, and that 
have the required symmetry-antisymmetry properties are 0 and 
sin20. Taking the Airy stress functions for the two regions as 
linear combinations of these two terms (subscripts 1 and 2 are 
used to refer to the two regions - y < 6 < y and y < 6 < 2-K — y, 
and the corresponding elastic constants of the two materials), 

</>! =Ad + B sin20 (44) 

4>2 = Cd + Dsm26. (45) 

The requirement that tractions and displacements be con
tinuous on 8=±y gives the three equations (only three, 
because am = 0 for all terms in the Airy stress functions) 

A + 2Bcos27 - C - 2Z>cos27 = 0 (46) 

BT(Kl + l)sm2y-D(K1 + l)sin2y = 0 (47) 

AT-BTfa - 1 ) C O S 2 7 - C + Z ) ( K 2 - l)cos27 = 0 (48) 

where T = fi.1/it,l. The fourth condition for finding the 
unknown coefficients is, of course, the requirement that the 
stress resultant on a circle around the origin be a couple of mo
ment M. 

The system (46)-(48) has degeneracies for y = ir/2 (two half 
planes) and T = 1 which have to be dealt with separately. Ex
cluding these special cases the solution is 

M(l-a) 
<t> i = — ( - 20cos27 + sin20) (49) 

M( 1 + a) 
<t>2 = — ( - 20cos27 + sin20) (50) 

A = 2<{ [( l+a)Tr-2a7] cos 27 + a sin27) (51) 

where the constant a is defined by (35). This solution suffers 
from the same defects as the Carothers solution: The quanti
ty A can vanish for special values of 7 (in fact it vanishes for 
two values of 7 when — 1 < a < 0 ) , and it predicts shear trac
tions on a circle around the vertex that involve sign reversals. 
It is, in fact, a fake solution: The interfaces between the two 
wedges transmit no tractions; the moment M is simply split 
between the two regions so that the displacements are con
tinuous on 0= ± 7 . Thus, no matter how small the mismatch 
in the elastic constants is, the vulgar formulation does no bet
ter than for a single wedge. 

It is still worthwhile to consider the two special cases men
tioned before. For 7 = 7r/2, (46)-(48) collapse into the two 
equations 

A-2B-C + 2D = 0 (52) 

AT + BT(K1-1)-C-D(K2-1) = 0. (53) 

Now there are not enough conditions to determine the 
unknown coefficients uniquely. This is obviously connected 
with the fact that, for half planes, it matters whether the cou
ple approaches the interface from one side or the other, as 
discussed in Section 4. It goes to the credit of the vulgar for
mulation, however, that it can, in a sense, anticipate this 
result. 

For r = 1 and cos27 ?± 0, the result is 

<t>i=^=-^-e (54) 
2TT 

which is the same as for a homogeneous body. No objections 
can be raised against it. 

For T = l and cos 27 = 0, however, system (46)-(48) col
lapses into the equations 

A-C=0 (55) 

BT(K1 + 1)-D(K2 + 1) = 0 (56) 

and the solution is no longer unique. The choice A = C and 
B = D = 0, corresponding to (54), may be the best on physical 
grounds, because it avoids the terms related to a center of 
shear, and gives constant shear tractions on a circle around the 
vertex. 

It may be of interest to note that there are no dilemmas 
when the tip of the embedded wedge is loaded by a concen
trated force (Dundurs, 1962). 

6 Conclusion 

Contrasted to a concentrated force, the concentrated couple 
exhibits various anomalies when it approaches either a discon
tinuity in the elastic constants or a singular point in the 
geometry. In the latter case, infinite stresses are created 
everywhere in the material. This anomaly includes, besides the 
classical "paradox" of the wedge, the couple approaching the 
tip of a crack, the vertex of a wedge embedded in another 
elastic material, and the tip of an anticrack. The anticrack 
(rigid lamellar inclusion of negligible thickness) is discussed in 
a separate paper (Dundurs and Markenscoff, 1989). It appears 
that what is important in this phenomenon are only the orders 
of the interacting singularities of the loading and geometry. If 
the load-induced singularity at an interior point has a local 
stress field of the order r~x, and the geometric singularity is of 
order r~* (note that J I < 1 , because the geometric singularity 
must have an integrable strain energy density), a unique limit 
exists only if \ + ^<2. In this connection, the geometrically 
smooth interface between two materials corresponds to LC = 0. 
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Wedge-Apex Crack in an
Angularly Inhomogeneous Wedge
An edge crack surrounded by a slender, triangularly-shaped elastic inclusion is used
to represent an experimentally-observed crack layer generated by constant
amplitude fatigue conditions. Approximate but explicit formula is derived for the
stress-intensity factor. As a byproduct, the exact stress-intensity factor for the title
problem is explicitly obtained.

1 Introduction

In a series of constant amplitude fatigue crack propagation
tests reported by Chudnovsky (1984, 1987), the propagation
of a crack is observed to be accompanied by the propagation
of a crack layer, using Chudnovsky's terminology. A typical
experimental result is reproduced in Fig. 1. It is seen that the
crack layer assumes the shape of a round-tipped slender
triangle. An extensive experimental study of fatigue crack
layer propagation may be found in Botsis, Chudnovsky, and
Moet (1987).

We propose to model the crack layer via a "strength of
materials" approach by assuming that the crack layer is ac
tually an isotropic and homogeneous elastic inclusion with a
modulus softer than that of the sample material. The elasticity
problem depicted in Fig. 2(a) must then be solved. This
problem is solved in this paper.

In the process of solving the aforementioned problem, we
realized the need of the solution to the elasticity problem
depicted in Fig. 2(b). The SIF of this problem is determined
exactly. In fact, the exact SIF for the problem depicted in Fig.
3 can be determined even if the material is angularly in
homogeneous with respect to the origin. This solution is
presented in Section 3. What is central to the analysis is the
solution to an angularly inhomogeneous wedge subjected to a
wedge-apex load. This solution is given in the Appendix. The
steps needed in completing the stress-intensity factor calcula
tion follow straightforwardly from an energy-momentum for
mulation (Eshelby, 1951, 1956, 1970 and Wu, 1988) which is
summarized in Section 2.

2 Energy-Momentum Tensor in Plane Elastostatics

Let O-(z] , Z2) be rectangular cartesian coordinates and let
(i], i2 ) be the associated unit vectors. A polar coordinate
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system (r, 0) is also erected at 0, and the associated vectors are
denoted by (en eo)' A typical two-dimensional region is
denoted by R, its boundary by aR, and the outward unit nor
mal to aR by n. The displacement, strain, and stress are
denoted by u", 1',,{3 and T,,{3' respectively. We assume that the
elastic material is inhomogeneous in 0 and that the stresses
may be derived from the strain energy density W(u", (3' 0) via

aw
T,,{3=--' (1)

aU",{3

In the absence of body forces, the symmetric stress tensor
satisfies the equations of equilibrium

T{3",{3 =0. (2)

Using equation (1) and (2), we obtain

aw
P{3", {3 =--ao0,,, (3)

where

P{3" = W0{3" - T{3'AU'A, ,, (4)

is just the energy-momentum tensor which is not symmetric.
The energy-momentum traction vector p along a curve C

with unit normal n is defined by

. /

, .
Fig. 1 Fatigue crack-polystyrene
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Fig. 2 Crack-layer geometry; fl is the half plane with the edge crack 

P=Pja=Pnan(iia (5) 

which is directly involved in the various known conservation 
integrals. In particular, the M-integral reads 

f f dW 
(6) 

We note in passing that for the angularly inhomogeneous 
material considered in this paper, 

dW 1 bW 
(7) 30 3d 

3 Wedge-Apex Crack in an Angularly Inhomogeneous 
Wedge 

Consider now the elasticity problem depicted in Fig. 3. The 
material is angularly inhomogeneous with respect to the 
origin. The problem, however, is completely symmetric with 
respect to the crack orientation in that the geometry, load, and 
material inhomogeneity are symmetric with respect to the 
z raxis. Our objective is to determine the Mode-I SIF K. The 
pertinent results for homogeneous material may be found in 
Freund (1978) and Tada et al., (1970). 

Let us apply the M-integral (6) to the region R depicted in 
Fig. 3. In view of (7), the area integral is identically zero. Since 
the energy-momentum traction p along a traction-free boun
dary is normal to the boundary, the line integrals along the 
crack and wedge boundaries are also zero. It follows that the 
M-integral is merely given by 

Ia,+I, + 2I„ = 0 (8) 

where / „ , /, , and Iw are the line integrals along the circular 
arcs at infinity, around the crack tip, and around the upper 
portion of the wedge apex, respectively. 

The stress field at infinity may be deduced from the formula 
given in the Appendix by letting 

-ei=e2=e0,F=2M1. (9) 

It is 

16/t(0)P cose 

[1 + K(fl)]af, ~T~ 
( f - 0 0 ) (10) 

Fig. 3 An angularly inhomogeneous isotropic wedge 

where 

8/i(0) 

-»„ l + «(0) 
•cos20tf0. 

The value of / „ is just 

- s . -Trrerrr
2dd = 2P2/af\. 

(11) 

(12) 

In stress field near the origin and for 0<6<6o may be 
deduced from the formula given in the Appendix by letting 

el=o,e2=e0,¥=Pil+Qi2. (13) 
It is 

8u(0) 
T„= „ r ' (41 cos 0+.42sin0), (# -0 , O<0<0O), (14) 

U + K(0)Jr 

where At and A2 are given by (AS) and (A9). The value of I„ 
is just 

h= JQ -^-Trrerrr
2d6= --^(AtP+AzQ) (15) 

The properties of the material at the crack tip are governed 
by n(0) and K(0) where the 0 stands for 0 = 0. It follows that / , 
may be expressed in terms of the J{ -integral (Rice, 1968) and 

It=-W±l#a (16) 
MO) 

where K is the Mode-I SIF. Substituting the above results into 
(8), we obtain 

which is the exact SIF for the problem posed in Fig. 3. For the 
case of a homogeneous wedge, (17) becomes the known results 
given by (Tada et al., 1970) and (Freund, 1978). 
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Let us now apply (17) to the case depicted in Fig. 2(b) where 
the wedge angle is 2a. Moreover, we assume that a < < 1 so 
that only terms linear in a are retained. The result is 

r 4TT(1-5) 1 1 / 2 r 8 1 

where 

6 = 1 -
( 1 + K + K 

(19) 

is a composite parameter. We note in passing that for the 
problem under consideration there are two independent com
posite parameters (Dundurs, 1969). 

The homogeneous-wedge counterpart of (18), denoted by 
KH may be deduced from (18) by setting 5 = 0, i.e., 

H ^L( , r 2 -4) t f J 
(20) 

which is the result of Freund (1978). Using KH as a normaliz
ing factor, we obtain from (18) 

* 0 (« ,S) = - ^ = (1~5)1/2[~1+ 2
8 ail. (21) 

KH L TT(7T'! - 4) J 

Thus, for a small, K0 may be approximated by 

(22) 

4 The Crack Layer As An Elastic Inclusion 

We proceed to determine the SIF, associated with the situa
tion given in Fig. 2(a), where the crack layer is bounded by two 
radial lines and a smooth curve C. To fix ideas, let C be de
fined by 

C:za=yM (23) 

where -q is the arc length along C. The unit tangent and normal 
to C are denoted by »/ and £, respectively. We shall also use £ 
to denote the distance from C along £. It follows that (£, -q) 
form a set of orthogonal curvilinear coordinates. We shall use 
?>f, rm and rj , to denote the stresses relative to the curvilinear 
system. 

It was shown by Wu (1988) that the energy-momentum trac
tion jump along C may be represented by 

W O , r,)-Ppa<P, n)]^(vK = qm (24) 

where £ = £pi0 is the normal to C and /^(O, !?)=/(£, T?) 
evaluated at £= ±0 . Moreover, 

I *• r2 5 i ( 2 + ^ ) _ 
l + 5 , - 5 2 

' f -T 2(1 + 6,-52) •a (25) 

where 

(26) 

are two new composite parameters and all T'S are evaluated at 
f = - 0 . 

Let us now apply the M-integral (6) to the region R depicted 
in Fig. 2(d). In view of (7), the right-hand side of (6) is iden
tically zero except along C where a jump in energy-momentum 
traction takes place. The result is 

I, + 2I„ \cyJa<i(.v)d-q (27) 

where 7, is given by (16) with K (0) and ^(0) replaced by K - 1 

and JX~ , respectively, and Iw by (15) with P = 0 and 0o = TT/2. 
We recall that C is only the curved portion of the crack-layer 
boundary. The needed SIF will be computed from (27). 

The function q(i]) needed in completing the calculation is 
defined by (25) in which the values of the stresses are 
unknown. However, if the distance between C and the crack 
tip is relatively small, the needed stresses may be approx
imated by the crack tip AT-field TPP, T^, and TP4, where (p, 4>) is 
the crack-tip polar coordinate system. The accuracy of such an 
approximation has been favorably substantiated by a 
benchmark solution by Wu (1988). In view of the stated ap
proximation and the specific configuration, the curve C is 
chosen to be a circular arc to facilitate the ensuing computa
tions, viz., 

C: zja = ai, + kaotCp (28) 

where ep is the crack-tip radial direction, Fig. 2(c), and k an 
aspect ratio greater than 1. The polar system (p, </>) may now 
be identified with the curvilinear system (£, rj), and (27) yields 

K(a, 8, k) = -—---
KH \ 1 

U + — [/,(«, fr) + a*/ 2 (a ,*)] 
2ir 

(29) 

where 

2-wkaa f3 8u~ 
„2 _ q(4>)cos4>d<t>, 
Kl J-0 1 + « 

, 2-Kkaa. t$ 8|&- , , 

X2 1+K-

(30) 

(31) 

and |3 = s in - 1 [a + (\/k)]. Since I2 is multiplied by a, the value 
of I2(d, k) may be replaced by I2(0, k). Using the K-field T'S to 
approximate the T'S needed in the q expression, we obtain 

<5i ( 1 „ • „ 1 • - 1 1 fl + sinS /, =- (—-(3 + sin/3 ——sin3/3 ——sin4/3) 
16(l+6j - 5 2 ) V 2 

5, / 9 1 \ 
—-L(2/3 + —sin|3 + sin2/3——sin3/3) +(5, - 5 2 ) 

2 V 2 6 / 

/ 15 21 5 1 \ 
x (—/3 + -r-sinjS + sm2J3 sin3/3 + —sin4j3 j 

h = 1 6 ( l +
5 5 ' - 6 2 ) ( 2 g + S i n / ? " S i n 2 g " X S i n ^ ) 

—j- {5(3 + 4sin/3 sin2/3) 

6,(2 + 62) 

(32) 

+ (5,-52)(2/3 + 2sin|8) + 

13 15 

8 ( l + 5 , - 5 2 ) 

5 . . 1 / 1 3 15 5 . 1 \ 
(̂ —(3 + — sin/3 - — sin2/3 + -jjS™W) • 

(33) 

Finally, the composite parameter 6, (19), is related to 5, and 52 

by 

5 = ( 5 1 - 5 2 ) / ( l + 5 1 - 5 2 ) , (34) 

as there are only two independent parameters (Dundurs, 
1969). 

The normalized SIF K(a, 5, k) defined by (29) is plotted as a 
function of the shear modulus ratio n~ / i j + for v~ = v + = 0.2, 
a = 57r/180 and k=l to 2 at 0.2 increments in Fig. 4. It is 
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Fig. 4 Normalized SIF versus shear modulus ratio for v~ =v + 

a = 57r/180, and k = 1, 1.2, 1.4, 1.6, 1.8, and 2.0 
= 0.2, 

noted that K(a, 8, k) approaches to a limiting curve very 
rapidly as k increases. While (29) is approximate, the exact K 
must satisfy the condition 

lim lim K(a, 8, k) = Ko(0, 8)= (J-r) (35) 

where A:o is given by (21). The approximate K plotted in Fig. 4 
does appear to tend to the above limit. 

When a crack layer is modeled by a homogeneous inclusion, 
the inclusion modulus \x~ must be less than ii+. It is noted 
that in this region (ix~/n+ < 1) the layer shields the crack and 
decreases the SIF. 
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A P P E N D I X 

An Angularly Inhomogeneous Isotropic Wedge 

Consider an infinite wedge occupying the region 0<r<oo 
and di<8<62 where (r, 6) are the polar coordinates relative to 
a Cartesian frame (ij, i2). The elastic wedge is angularly in-
homogeneous so that the shear modulus n and Poisson's ratio 
v are functions of the polar angle 6. It follows that the plane-
elasticity constant K defined by 

' 3 -4K plane strain 

(3 - c)/(l + v) plane stress 
M l ) 

is also a function of 6. 
The wedge is loaded at the apex by a concentrated force 

¥ = Faia. It can be shown that the stress field defined by 

Trr = r(d)/r, Trt = T M = 0 042) 

satisfies the equilibrium identically. The compatibility condi
tion is satisfied if 

IwH..-£ M«) 
1 + K(0) 

T(6) = 0 (A3) 

which governs the single unknown function T(6). The general 
solution is 

MS) 
[\+K(6)]r 

{A\COsd+A2smd) 044) 
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ur = (AlcosO + A2sin8)lnr+G'(d) (A5) The constants Ay and A2 may be expressed in terms of the 
concentrated load F, viz., 

ue = Br - (A, sin0 - A 2cos0)liv 

K(8) 

"W where 

f 3 - K ( 0 ) aaBA»=-Fa (.48) 
— U lCos0+,42sin0]e?0-G(0) (A6) «p p <* > 

J 1 + Kid) 

where A,, A2, 5 are constants and G(0) satisfies tfn=l cos?8d0 a =[ 2———sin2 0^0 

G " (6) + G(6) = Al sine - A 2 cos0 

3-«(fl) „ „ . „ ' , „ „ , _ re2 8/*(«) f 3-K(0) f z 8u(0) 
—O4,cos0 + .42sin0)e?0. (.47) «i2=«2i = , ' cosflsinfltffl. (/i9) 

J 1 + K(0) J»i 1 + K ( 0 ) 
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Multiple Region Contact Solutions 
for a Flat Indenter on a Layered 
Elastic Half Space: Plane-Strain 
Case 
The plane-strain problem of a smooth, flat rigid indenter contacting a layered elastic 
half space is examined. It is mathematically formulated using integral transforms to 
derive a singular integral equation for the contact pressure, which is solved by ex
pansion in orthogonal polynomials. The solution predicts complete contact between 
the indenter and the surface of the layered half space only for a restricted range of 
the material and geometrical parameters. Outside of this range, solutions exist with 
two or three contact regions. The parameter space divisions between the one, two, or 
three contact region solutions depend on the material and geometrical parameters 
and they are found for both the one and two layer cases. As the modulus of the 
substrate decreases to zero, the two contact region solution predicts the expected 
result that contact occurs only at the corners of the indenter. The three contact 
region solution provides an explanation for the nonuniform approach to the half 
space solution as the layer thickness vanishes. 

1 Introduction 

A common method of protecting a soft material is to coat it 
with a layer of harder material. This is done in many applica
tions where wear and damage due to sliding contact of solids 
are a problem. Examples include the hard overcoats which are 
used to protect the magnetic layers on the platters of hard disk 
files. In order to design an overcoat for maximum protection 
of an underlying layer, one must have a clear understanding of 
the effect of the layered structure on the stresses. 

The solutions for rigid round and flat indenters contacting a 
homogeneous half space of an elastic material have been 
known for a century. Correct solutions of some contact 
problems on layered structures, however, have not yet been 
published. The contact problem of a single layer bonded to a 
half space was considered by Chen and Engel (1972), who ob
tained a solution assuming that the top surface of the layer re
mains in complete contact with the indenter. For certain com-
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binations of parameters they calculated normal stresses under 
the indenter that were tensile. The correct solution must allow 
separation between the indenter and the contacting surface. 
The contact region must be found as part of the solution and it 
depends on the relative dimensions and material parameters. 
This type of contact problem is termed a stationary receding 
contact problem by Dundurs and Stippes (see Gladwell (1980), 
page 183). It is receding because the contact region is a subset 
of the whole face of the indenter and stationary because the 
region size does not depend on the load. 

The problem is considered in the context of linear elasticity. 
The layers and the substrate are assumed to be isotropic, 
homogeneous, and perfectly-bonded at their interfaces. The 
indenter is assumed to be rigid with a perfectly-plane face and 
sharp corners, which lead to singularities in the contact 
pressure. 

The problem is solved by the use of integral transforms. 
After the transformed field equations are solved and the boun
dary conditions applied, the inverse transform leads to a 
singular integral equation for the pressure under the indenter. 
The integral equation has Cauchy singularities, but methods 
for numerical solutions exist. They involve expansion in the 
orthogonal polynomials that are appropriate to the 
characteristic behavior of the solution. 

The solution of the contact problem that assumes contact 
over the entire face of the indenter is not always the physically 
relevant one. Indeed, solutions with one, two, or three contact 
regions between the indenter and the layer surface are found. 
These solutions exist only for certain combinations of the 
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material and geometrical parameters for the layered media. In 
a case of a single layer, the number of contact regions in the 
solution depends on the elastic moduli and the layer thickness. 
Underlying layers have the effect of changing the effective 
modulus of the substrate under the top layer. Based on the 
solutions obtained, the modulus-thickness parameter space is 
divided into zones where the solution has one, two, or three 
contact regions. It is found that the number of contact regions 
cannot exceed three. 

In all cases the problem is reduced to one of determining the 
contact pressure. Therefore, the fundamental results to be 
presented are the pressure profiles under the indenter and the 
parameter space divisions between the one, two, and three 
contact region solutions. The dependence of the contact 
region dimensions on the layer properties are considered in 
detail. The other results to be presented are the stress intensity 
factors at the corners of the indenter. 

2 The Problem Formulation in the Theory of Linear 
Elasticity 

The following equations give the relevant displacement and 
stress components for plane strain in terms of the two 
unknown harmonic functions 0 and ^ . The first component 
of the displacement is denoted by u and the third by w, while 
the stress components have double subscripts, corresponding 
to the appropriate coordinates. 

d 
2lM = - — ( z * + <t>), (1) 

dx 

2/nw = KM^—z-
d¥ d<jy 

2v— Z-
dz 

dz dz 

d2* d2<t> 

dx2 dx2 

dV d2¥ d24> 
TXZ = (1-2*-)— z-

= 2 (1-*) -

dx 

a * 
~dz~ 

dxdz dxdz 

d2<t d24> 

dz2 dz2 

(2) 

(3) 

(4) 

(5) 

2.1 Boundary Conditions. At the top layer surface, 
z = 0, the frictionless contact with the indenter is described by 

wi(x,0) = 8, *G4C 

T1
ZZ(X,0) = 0, xtAc 

a l l* 

(6) 

rJU*,0) = 0, 
where Ac is the contact region and 5 is the indentation. A 
numerical superscript on a dependent variable denotes the 
number of the layer in which the quantity is defined, with 1 be
ing the top layer. Quantities in the half space are denoted with 
a superscript s. Parameters and other quantities carry this in
formation with use of a subscript. 

Since the layers are bonded to each other and to the half 
space (substrate), the displacements and stress components in
volved in the tractions are continuous across these interfaces. 
The number of layers is TV,. Thus, the boundary conditions at 
the interfaces are 

w'(*,z,) = w'+1(x>z,) 

w'(*,z,) = w'+1(*,z,) 

ri„(x,Zi) = Txi
+1(x,zi) 

T^(*,Z,) = T^+ 1(*,Z;) 

where z, is the z coordinate of the interface between the z'th 
and (/+ l)th layer, and the equations hold for all values of the 
coordinate *. An index value of Nt + 1 denotes quantities in 
the substrate. The layer thicknesses are given by 

hr- -z,_i, /=1,2 , ,N„ (8) 

where z0 is zero. 
The final condition on the solution is overall equilibrium, 

which requires that the stresses decay to zero for large x in 
such a way as to make the integral of the tractions finite over 
the boundary of an arbitrarily large semicircle. Since the 
displacements involve the integral of the stresses, they are not 
globally bounded, and the problem therefore has to be for
mulated in terms of the surface slope. 

Overall equilibrium also requires that the integral of the 
pressure over the contact region equals the total load, L, ap
plied to the indenter. This condition is 

J/1,. 
z{x,Q)dx. (9) 

2.2 Application of Integral Transforms. The method of 
solution of the field equations, supplemented by the boundary 
conditions (6) and (7), employs the Fourier transform in the 
coordinate * to reduce the problem to a singular integral equa
tion. First, the transformed field equations are solved 
analytically in terms of exponentials and unknown functions 
of the transform variable, which are determined by the 
transformed boundary conditions. The inverse transform is 
then applied to recover the dependence on the * coordinate in 
the form of an integral equation. This is a well-known tech
nique (see Gladwell (1980), for example). The application of 
the boundary conditions can be simplified by a judicious 
ordering of the calculations. Brekhovskikh (1980) provides a 
useful method for this ordering in the context of elastic wave 
solutions for layered media. 

The Fourier transform of a general harmonic function is 
known and thus 4> can be written as 

4>tt,z) = A(Z)e*W +B{$)e-^ (10) 

where the absolute values are employed for later convenience. 
Similarly, the transform of M' is 

$(£>z) = C(£)e*lfl+Z>($)e--S!lfl. (11) 

The transforms of u, w, TXZ, and TZZ are needed in order to 
apply the boundary conditions (6) and (7). These are written in 
terms of the four unknown functions A(%), fi(£), C(£), and 
Z>(£), by substituting equations (10) and (11) into the 
transforms of equations (1), (2), (4), and (5). The result of 
these operations for a given layer can be written as 

f(£,z) = T(£,z)a(a (12) 

where 

' « , * ) • = 

r««,«) "] 

TXz(Z,Z) 

Jzz(£,,z) _, 

-, a(£)=-

rA(£) 

cm 

\m) 

(13) 

i = l , 2 , . N„ (7) and 
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2H 
PzM\ 

l£l ,z\i\ 

— * 

I? I 

,-z\i\ ilz ,z%\ 

- * l { l 

Ip. 2\x 

_ ^ 2 e z l f l _ g 2 g - z l f l 

2^ . 

2M 
rflfl 

- / £ ( ( ! - 2 * ) - z l £ I )ezlfl 

(2(1 -? ) !£ I - z g V 1 1 1 

These expressions are valid in the layers and the substrate pro
vided the appropriate material constants are used. When need
ed for clarity, a subscript will be attached to the vectors f and a 
and the matrix T. 

In the substrate, the regularity condition at infinity requires 
that the coefficients of the ez l{' terms vanish in the solutions 
for tys and <j>s, so that 

«,«) = 

f ° " 
B&) 

0 

.A«L 

(15) 

2.3 Transfer Matrix Approach. The idea of the transfer 
matrix approach is to eliminate the unknown functions of £ in 
the layers and write the surface values of the physical quan
tities directly in terms of the substrate functions Bs{£) and 
Ds{%). The boundary conditions (6) are then used to solve for 
these two remaining functions. 

Using the interface boundary conditions to eliminate the 
unknown functions of £ in the layers, we find the transfer 
matrix between the substrate and the top surface of the first 
layer to be 

N, 

Htt,A„/i2, . . . ,hN)= ( I IA, ( { ,A I . ) )T ,« ,Z J V ) > (16) 
i = i ' 

where the single layer transfer matrix is given by 

A,({, A,) = T,«,z,_i)T,-'($,*,). (17) 

The matrix H gives the physical quantities at z = 0 in terms of 
the two unknown functions in the substrate as 

i i * -zifi 
2JX 

2\x 

-»«(1 

- ( 2 ( 1 -

-2v) + z\H\)e-

v)l£l+z£2)e-

z l { l 

z\i (14) 

L Muti22-MA2nM J 

where the Hy are the components of H. The function of £ 
multiplying P(£) in equation (19) is the transform, G(£), of the 
Green's function, g(x,t), that relates the surface displacement 
to a surface normal force, 

G(£) = 
H^H32-H22H^ 

HAAH-,-, — HA->H: 
(20) 

J 44 J J 32 42J-'34 

If there is only one layer bonded to the substrate the func
tion G(£) can readily be evaluated analytically. Using the sym
bolic manipulation program REDUCE, we obtain the result 

G(£) = 
ax+e-2l,iHa2(h^) + a3e-2h^) 

2 ^ / 3 1 + e - 2 M ( / 3 2 ( M ) 2 + 03+j34e-2''is)]l£l 
(21) 

where the constants a,- and j3, depend only on the four material 
parameters as given in the Appendix. It will be useful later to 
have the following limit 

lim£G(£) = — - ^ j -
{_«, 2 / i , 0 , 

1 

Mi 
(22) 

This is the short wavelength limit of the Green's function (£ is 
similar to a wave number), which also corresponds to the case 
of hi— oo. Thus, we obtain the known result that the 
transform of the Green's function for a half space with shear 
modulus HI and Poisson's ratio vi is 

G0(£) = - ^ . (23) 
Mi I? I 

When more than one layer is present, equation (20) is used 
to numerically calculate the values of G(£) as explained in 
Shield (1988). 

tftt) "1 

Gtt) 

-Pit) J 

- =H(SA ,h2, . • ,hNl) • 

" 0 ^ 

BM) 

0 

LA(?)J 

(18) 

Here we have also used the notation U and W to refer to the 
transforms of the surface tangential and normal displacements 
and Q and - P to refer to the transforms of the shear and nor
mal tractions on the surface z = 0. The minus sign appears 
because of the convention that positive contact pressure means 
compressive stress. The dependence of H on the layer 
thicknesses has been displayed explicitly in equation (18), but 
it should be remembered that H also depends on the elastic 
parameters of all the layers and the substrate. 

Next, the no shear boundary condition in (6) is used to 
eliminate the unknown functions of £ in the substrate and 
write the transform of the surface displacement directly in 
terms of the transform of the contact pressure as 

2.4 Reduction of the Problems to Singular Integral Equa
tions. In this section the two remaining equations in the 
boundary conditions (6) are used to derive a singular integral 
equation for the contact pressure. 

The pressure and its transform are related by 

/>($) = - ^ = - 1 p(x)e^dx, (24) 
2ir 

where the integral is taken over the contact region. Equation 
(19) relates the surface slope in terms of the transform of the 
pressure as 

dw(x) 

dx 

1 

2TT 
- /£G(£)P(£)e-«tf£. (25) 

The surface slope, given by (25), must be zero for x€Ac by the 
first of (6). Equations (24) and (25) therefore yield dual in
tegral equations for the pressure and its transform, which can 
be reduced to a single integral equation, 
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0= * "' ( g'{x,t)p(t)dt, x€Ac, (26) 

where 

g'(x,t) = - + n(x,t). (27) 
t—x 

The layer term n(x,t) is given by 

n(x,t) = - ( + " N(.H)sm(.x ~ OW. (28) 
Jo 

where the function N(£) is the exponentially decaying part of 
G(£), given by 

MD = T ^ i - ?G«) - sgn(? ) . (29) 

Equation (26) is the convolution of the pressure with the 
Green's function, given by equation (27), and it is the desired 
singular integral equation for the problem. 

2.5 Nondimensionalization. In order to solve numerical
ly the integral equations, it is desirable to nondimensionalize 
the variables. The length scale for the problem is the half 
width of the indenter, denoted by a. The stresses are refer
enced to the substrate shear modulus ns, as are the shear 
moduli of the layers. With this choice, a layer stiffer than the 
substrate has a modulus greater than one, while a softer layer 
has a modulus less than one. The constant factor multiplying 
the integrals in the integral equations will be denoted by 0, 
given by 

8 = 1~"1 . (30) 
i > i 

The equations in nondimensional form are not repeated here, 
but they will be exhibited in the sections in which they next ap
pear and it is understood henceforth that all quantities are 
dimensionless. 

3 Numerical Solution of the Singular Integral 
Equations 

3.1 Properties of the Solution of a Cauchy-Type Equa
tion. The Cauchy singular integral equations derived above 
have been considered in general by Muskhelishvili (1953) and 
an overview of their application to elastic contact problems 
has been given by Gladwell (1980). The fundamental results 
are given in Section 29 of (1953) and their application to elastic 
contact problems is explained in Chapter 3 of (1980). The key 
result from these analyses is that the form of the solution of 
the integral equation depends only on the strongest singularity 
in the kernel, the Cauchy singularity. The theory of Cauchy 
line integrals determines the characteristic part of the solution 
to a singular integral equation of the form 

*&>=[< (-^— + K0(x,t))p(t)dt,x^Ac, (31) 

where K0, can contain logarithmic singularities. The contact 
region can have the general multicontact form 

Ac = lbl,a1]Vlb2,a2]U . . . UlbNc,aNc], (32) 
where Nc is the number of separate contact regions. The form 
of the solution in each subregion is 

p,(x) = g,(x) la,- -x\ ± * \b, -* l *•*,/= 1, . . . ,NC, (33) 
where the functions g,(x) are bounded on [&,,«,]. The signs of 
the exponents are determined by the boundary conditions of 

the problem. In the case of a sharp-cornered indenter, the 
negative signs should be chosen for the exponents of the factor 
involving the coordinate of the corner. If all exponents are 
negative, the contact is referred to as complete and the extent 
of the contact region is known beforehand; it is the same as 
the indenter, which can have separate contact regions. If a cor
ner is rounded or if the surface of the elastic material recedes 
smoothly from the surface of the indenter, the contact is 
termed incomplete and the positive sign is chosen for the ap
propriate exponent. In this case, the extent of the contact 
region must be determined as part of the solution of the pro
blem by requiring that the pressure vanish at that boundary of 
the contact region. 

3.2 The Method of Solution. A numerical method for 
solving an equation of the form of equation (31) was first pro
posed by Erdogan and Gupta (1972) and is summarized in Er-
dogan, Gupta, and Cook (1973). This method is a simplifica
tion of the classical method of expansion in orthogonal 
polynomials. It is based on the fact that a Gauss-Chebyshev 
integration scheme can be used to evaluate the singular in
tegral in (31) for a discrete set of values of x. Thus, we have 
the approximation that 

J-i t-yk ft s,-yk 

where p(t) has the form (33). The expressions for the Wh sh 
and yk are given in (1973) for the various combinations of ex
ponents in (33). This method implicitly assumes that the 
regular part of the pressure can be represented to sufficient ac
curacy by 

« ( 0 = E * « T B ( 0 . 05) 
rt = 0 

where the ir„(t) are polynomials whose weight function is the 
coefficient of g(f) in (33). Applying this method to equation 
(31) we obtain 

N r l i 
F(yk)= U W,g(si)\ +K0(yk,Si)\, k=l,... ,N-l. 

i = l Lsi~ yk J 

(36) 

This is a set of N- 1 linear equations in the unknowns g{s,), 
the load equation provides the Mh equation. 

In the following it will be useful to solve directly for the 
coefficients g„ instead of the values for g(t) at the points s,-. To 
accomplish this we first rewrite equation (36) as 

w * w V / , i , p 1 gWo(yk,0^ 

k=\ N-\, (37) 

by removing the approximation to the integral of the second 
term in (31). (Here, we are using as an example the case of 
Ac = [-\,\] with complete contact.) Using the expansion in 
equation (35), with the polynomials TT„(0 identified as the 
Chebyshev polynomials of the first kind, T„(t), in place of 
g(Sj) and g(t) and interchanging the order of summation, we 
obtain from equation (37) 

n=0 L Jy i = l si Sk 

J-i V l - r 2 J 
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The remaining integral can be evaluated with the Gauss-
Chebyshev integrator suited to the behavior of the integrand 
(see Abramowitz and Stegun (1965), for example) to yield 

N-1 N . , , 

«=o L J V 1=1 N i ; fk ' J 

k=\ N-l. (39) 
These are N- 1 equations in the N unknowns g„. 

If the solution of the problem is symmetric with respect to 
the origin, half of the computational effort can be saved. In 
this case we write g(t) as 

N/2-l 

g(0= E g„T2n(t), (40) 
n = 0 

where N is assumed to be even. Using this in the aforemen
tioned derivation leads to the same result, equation (39), with 
the range of summation on n reduced by half and Tn replaced 
by T2n. Since there are only N/2 unknowns, it is only 
necessary to generate N/2 equations. The load equation is re
tained and we consider only positive yk, given by 
k = 1, . . . ,N/2 - 1. The remaining values of k would produce 
redundant equations. 

3.3 Numerical Inversion of the Layer Kernel. In order to 
use the methods presented for solving singular integral equa
tions, it is necessary to calculate the values of the kernel n(x,t) 
given by (28). The function Mjj) in the integrand of (28) is 
bounded and is 0(e~h^) as £ —oo. The integrand of the in
tegral depends on the term x—t, which can have values in the 
interval [-2,2] for the numerical schemes just presented. This 
term can never be identically zero, but as the order of the 
numerical scheme becomes large, the minimum value of yk — s, 
approaches zero. This combination of results makes (28) dif
ficult to evaluate. Also, as the layer thickness gets small, many 
cycles of the trigonometric function occur before Af(£) 
becomes sufficiently small for truncation. As h, becomes 
large, iV(£) decays more rapidly as £ — °°, making the value of 
the integral smaller. In the limit of infinite h{, the value of 
MJj) is zero. This suggests that the integrator used to 
numerically evaluate (28) should depend on the value of hl. If 
hx is small, the number of integration points should be related 
to the shortest period of the trigonometric function. For large 
hi the step size for the integrator should depend only on the 
decay rate of N(%) as £ — oo. The large h{ case is not critical, 
because in this case the value of M,£) is small and the layer has 
little effect on the solution. In the most interesting case of 
ht<l, many cycles in Af(£) can occur before it decays to zero. 
Since all of the functions involved in the integrands are 
smooth, a high order integration scheme is not necessary if 
this behavior of the integrands is taken into account. 
Therefore, we use a trapezoidal integrator with a step size A£ 
that is an integer fraction of the shortest period of the cyclic 
functions, 

M ~ - (41) 

The shortest period occurs for x—t = 2. The integration is 
truncated at £max, which is chosen such that 

MKnuJKe*, (42) 
where eh is a tolerance for the integration scheme. The con
tribution to the integral for £>£max is neglected. 

For small values of h\, the method just outlined can be very 
time consuming, and it must be remembered that the 
numerical method for the solution of the integral equation re

quires approximately N1 evaluations of this integral. In the 
case of more than one layer, considerable time is involved in 
the calculation of MJ-). Examination of the method presented 
shows that the N2 evaluations all use the values of Mjj) at the 
same points; only the values of x and t change. Thus, if the 
values of 7V(£) at the integration points are stored in an array 
when the integral is first evaluated, considerable time can be 
saved in successive evaluations. 

As hl —0, the function n(x,t) becomes large for x near /, as 
is revealed if one integrates equation (28) by parts to get 

MO) 1 P+°° 
n{x,t) = —4- + JV'({)cos(f-*)&#, (43) 

x—t x—t Jo 
where 

N m = ^ 1 ~ " s ) _ 1 ( 4 4 ) 

! - " i 

The first term in (43), when combined with the first term in 
g'(x,t) of equation (27), gives 

(,/_L + Jvra.)_iZfl_i_. { 4 5 ) 
\ t — X t — X / W t — X 

As A, — oo, for which n(x,t) = 0 in equation (27), we obtain the 
Green's function for a half space with the material properties 
of the layer, d/(t—x). Comparing this with the right-hand side 
of equation (45), we see that (45) is the Green's function for a 
half space of material properties vs and ^ (the nondimen-
sionalization has /**= 1). Thus, the leading term in the Green's 
function for a layered half space with a very thin layer is the 
half space Green's function for the substrate. This should be 
expected because for hl =0, we must recover the result for a 
half space of the substrate material. Equation (42) is not 
useful for numerical calculations until hx is as small as 0.01, 
which is much smaller than we consider here. The reason for 
this is that the coefficient of the second term in equation (43), 
\/(t—x), can be very large. Thus, h{ must be small enough to 
override and make the integral correspondingly small. This 
factor also magnifies any errors in the calculation of the 
integral. 

4 Solutions for Specific Contact Regions 

In this section, we specialize the problem to three specific 
cases of Ac. First, we consider the single contact region case, 
which has been treated previously in the literature. Its solution 
is characterized by non-negative pressure over the entire face 
of the indenter, which contacts the top layer over the region 
[- 1, + 1]. Next, we examine the two contact region solutions. 
These solutions involve contact of the indenter with the sur
face of the top layer only over the region c< \x\ < 1. Finally, 
the three contact region solution is presented. In this solution 
the indenter contacts the top layer surface for \x\<d and 
c< \x\ <1. Each of these solutions exist only for a certain 
ranges of geometry and materials. 

4.1 The Solution With One Contact Region. The one 
contact region solution, with Ac = [- 1,1], is given in the Sec
tion 3.2. The solution has the form 

. N/l-l 

/'(0 = - 7 f = f D g„T2n(t),K{-\,\]. (46) 
VI-? 2 „=0 

The set of algebraic linear equations for this case is given by 
(39) specialized to the symmetric form of the pressure given in 
(46). We write this set of linear equations as lAg = b, where 
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go 

8 N/2-I 

>> b 

0 "1 

0 

1 

(47) 

and the first N/2 - 1 rows of the matrix lA are determined by 
equation (39) to be 

lAkn ~ £ T2n(Si) (—— + n(yk,si)) 

k=\ N/2-l, « = 0, ,N/2-l. (48) 

The presuperscript on the matrix A indicates one contact 
region. The points st and the yk are given by (7.56) of Er-
dogan, Gupta, and Cook (1973). The (7V/2)th row of the 
matrix lA is given by the coefficients of g„ in the load equa
tion, which becomes 

l = irg0. (49) 

The nondimensional load has the value of one, without loss of 
generality. 

To be valid the solution must satisfy the condition that the 
pressure is non-negative over the entire contact region. Thus, 
if we define a function that is +1 when p{t) > 0 for all 
f€[—1,1] and - 1 otherwise, a simple bisection root-finding 
routine can be used to determine the parameter values such 
that p(t) = 0 for some t. The parameters that determine this 
root are the layer thicknesses hi and the material constants /*,-
and Vj. The root-finding routine varies one parameter, usually 
the top layer modulus nt, while all the others are fixed. The 
curve found (a surface in the 3N, + 2 parameter space) is the 
boundary of the zone of validity of the one contact region 
solution. 

4.2 The Solution With Two Contact Regions. If the 
pressure predicted by the one contact region solution is 
negative in some symmetric region about / = 0, then this solu
tion is not valid. The correct solution has contact between the 
indenter and the surface only over the region c< bd <1 for 
some unknown value of c. In order to solve the problem under 
these conditions, we must consider the solution of the integral 
equation (31) after it has been symmetrized with respect to the 
origin. Thus, we write equation (31) as 

° = j c (<-^—^ + n*(x,t))p{,t)dt,x^[c,\}. (50) 

The kernel n*(x,t) is 

n*(x,t)=-2\ 7V(£)sin(x£)cos(/£)tf£. (51) 

The pressure for the two contact region solution is zero atx = c 
and has a square root singularity at x= 1. Thus, we assume 
that 

P(t) = 
r-cz 

"w2 tg{s), 

where the function g(s) is given by 

N~l 

n = 0 

where 

(52) 

(53) 

s+1 
(54) 

The variable s is related to the variable t through the relation 
Gladwell(1980) 

2t2-l-c2 

1-c 2 (55) 

This map takes the interval [c,l] onto [-1,1] . After this 
change of variables equation (50) yields 

i
+i I 1 +S / X 1 — C \ 

J- g(s)[ + ——n*(x,t))ds,yZ[-1,1], 
-l N 1-s \s-y 4 / 

(56) 
where we have also related y to x according to (55). 

Equation (56) has the same form as equation (31), only the 
characteristic part of the pressure is different and the 
numerical approximation of equation (56) is 

N - l 

° = ~2NTT £ *» M *» ' * = h • • • 'N' ( 5 7 ) 

where 

T^ / x 1-c2 \ 
2Akn = L (l+si)T1T2n + l(c,i)l-—±— + ——n*(xk,ti)) 

n = 0, ,N-1, k=l, ,N, (58) 

and Sj and yk are given in Erdogan, Gupta, and Cook (1973) 
by equation (7.47). The variable <r, is given by (54) with 5 
replaced by st. The untransformed variables tt and xk are given 
by the inverse of equation (55), applied to s, and yk, 
respectively. 

The load equation (9) transforms, with use of the or
thogonality of the T2n+i, to 

1=-
1 • c 2 p + ' 1+s . . . ir(l-c2) 

g(s)ds = g0 • (59) 

We have found N+ 1 equations involving the N unknowns 
g„. Equation (57) has TV equations and the load equation pro
vides the other one. The number of equations is not excessive 
because there is another unknown, c, the inner contact dimen
sion, that must be determined as part of the solution. In order 
for a unique nontrivial solution to be found the rank of the 
N+ 1 equations must be N. Because the load equation is not 
related to the other TV equations, we must find a value of c 
such that one of the equations in (57) is redundant. That is, we 
require 

det(M) = 0. (60) 

This is a nonlinear equation giving c as a function of the 
material and geometrical parameters of the problem. A bisec
tion root-finding algorithm is also used to solve this equation. 
The determinate is found using a Gaussian decomposition of 
the matrix 2A. The determinate is the product of the diagonal 
elements of the upper diagonal result of the decomposition. 
After the proper value of c has been found, any one of the 
rows of 2A can be replaced by the load equation, and the set of 
linear equations can be solved for the g„. After the value of c 
is found and one row of 2A is replaced by the load equation, 
the matrix is denoted by L

2A. 
The solutions of the contact problems posed here are known 

to be unique (Shield, 1982), and the value of c determined 
from equation (60) should therefore be unique. The zone in 
the parameter space where this equation has no roots cor-
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responds to the zone of validity of the one contact region solu
tion. Thus, the zone of validity in the parameter space for the 
two contact region solution is bounded by the set of values of 
the parameters for which the number of roots of equation (60) 
changes from one to zero or two. The curve in the parameter 
space across which the number of roots changes from one to 
two is the boundary between the zones of validity for the two 
and three contact region solutions. These curves are found by 
defining a function that is +1 if equation (60) has one root 
and - 1 otherwise. A bisection root-finding routine is used to 
find the value of a parameter for which the number of roots 
changes while the other parameters are held fixed. The 
number of roots is determined by counting the number of sign 
changes that occur in det(M) as c is varied from 0 to 1. The 
boundary between the zones for the one and two contact solu
tions obtained using this method agrees with the results found 
in the previous section using the sign of the pressure. 

the same as used for the two contact region integral. Thus we 
have s' 1=3,. Using this integrator and the form of p2(t), we 
obtain for the approximation of the second integral in 
equation (61) 

2TT 

27V+1 
E g;i>+*;Ho;)-%n+i(o,) 

/ x d2 \ 
(65) 

This equation is valid for x = x'k or x = xk. The x'k are given by 

^(^F2) 

4.3 The Solution With Three Contact Regions. For three 
contact regions Ac = [- l, — c]U[ — d,d]U[c,l]. The motiva
tion for finding a two contact region solution was the observa
tion that the one contact region solution predicts negative 
pressure near x = 0 for some choices of the parameters. It was N 

also observed that the one contact region solution may predict Ml 1 = Y] (1 -t-s )a~' 7", .(a-) 
negative pressure over a region that does not include the ,= i 
origin. This occurs if the top layer is too thin for the two con
tact region solution to exist. Therefore, there is a zone in the 
parameter space in which neither the one nor the two contact 
region solution is valid. This is the zone where the three con
tact region solutions exist. 

We were able to solve the two contact region problem by us
ing symmetry to reduce the two integrals to a single integral. It 
will not be possible here to reduce the three integrals to one, 
but the same method can be used to reduce from three to two 
integrals. Equation (31) specialized to this form of Ac and 
symmetrized as in the two contact region case becomes 

and the //are similarly related to s,. The coefficient matrix of 
the g'n in equation (65) is denoted by lA2

kn when x is replaced 
by x'k and by ^A\\ when x = xk. This postsuperscript notation 
refers to the region in which a given pressure has effect. Thus, 
22 refers to the slope produced in [ - d, d] by the pressure p2 

and 12 refers to the slope produced in [c, 1] by the pressure p2. 
The matrix given in equation (58) in this notation is 3A\\. The 
remaining submatrix is given by 

( v' 1 rp- \ 

- i - [ + —n-{xi,tl)) 
n = 0, . . . ,N-\,k=\, . . . ,N. (67) 

These four submatrices makeup the complete set of equations 
with coefficient matrix 3A and the vector of unknows, g, given 
by 

o=5c
+'(^+**(*,*))/>1(*a 

3A-
3AU 

iA 12-

3,4 22j , g = -

g0 

8N-\ 
8a 

^ 8N~\ _. 

(68) 

+ \"0(-^xT
 + nt(-X't)Wt)dt (61) 

and is valid for x in [Q,d] or [c, 1]. Only one of these integrals is 
singular for a given value of x. This means that the techniques 
for evaluating the singular integrals given in Section 3 need on
ly be applied to one integral at a time. In (61) the subscript on 
the pressure refers to the contact region over which it is 
defined. 

The pressure, P\(f), defined in the region [c,l] is the same as 
in the two contact region solution, and is given by equations 
(52) and (53). The pressurep2(t) defined in [0,d], has a square 
root zero at the points ± d, 

(62) p2(t) = sfd^?g2(s'), 

where the function g2(s') is given by 

g2(s') = (o'y 
n = 0 

8'nT2„+l(0'). 

The variable s ' is related to t by 

2t2-cP 

(63) 

(64) 

and a' is given by equation (54) evaluated at s'. The prime is 
used on subscripted variables to denote quantities associated 
with the region [-d,d\. By examining the transformed in
tegral, we find that the proper integrator has a = /3 = - 1 / 2 , 

The matrix M has 2N nonzero rows. The number of 
unknowns in this problem is 2N+ 2. There are 2N entries in g, 
and the two contact region dimensions c and d must also be 
determined as part of the solution. The extra equations are the 
resultant load equation for the indenter, involving the sum of 
the integrals of pl and p2, and a consistency condition. The 
consistency condition is a mathematical statement that there is 
only one indenter, that is, that the normal displacement in 
each region must be the same. This condition can be stated as 

dw(x) 

dx 
dx = 0, (69) 

that is, w(c) = w(d). In the region d<x<c neither integral in 
equation (61) is singular. Thus, an integrator appropriate to 
the forms of the pressure can be used for any x value in this 
region. Using the integral representation of the slope in terms 
of the pressures we obtain from (69) 

(70) 

where 

0 = £ +
 Pl(t)IU)dt+\op2(t)I(t)dt 

I(t)=e\] ( ' ^ x r + n*{x't))dx' teAc- ( 7 1 ) 

The order of integration has been interchanged so that equa
tion (70) can be written as a linear equation in elements of g. 
The integral in (71) can be calculated using a Gaussian integra-

Journal of Applied Mechanics JUNE 1989, Vol. 56/257 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



tion scheme given by Abramowitz and Stegun in Table 25.4, 
and it yields 

where xf is given by 
(c-d)tf + c + d 

v " — 

(72) 

(73) 

Equation (70) can then be integrated numerically using the in
tegrators appropriate to the forms of the pressure to give 

_fp N~ 1 N 
+

 2(2N+l) ^ 8" LV+si)WlT2«+d<>;)W)- (74) 

The coefficients of the g„ and g'n in equation (74) form the row 
of the matrix *A for the consistency equation. 

We now have 2N+2 equations for the 2N+2 unknowns, 
however, they include implicit nonlinear equations for the two 
contact dimensions. If the correct values of the contact dimen
sions were known, then the 2N+ 2 equations would have rank 
27V for there to exist in nontrivial unique solution for g. This 
suggests that the proper conditions to determine c and d are 
both of 

det(/U) = 0, det(j^4) = 0, (75) 

where \A is the matrix 3A with one row replaced by (74). 
Finding the simultaneous root of these equations directly is 
difficult, but it is possible with an iterative procedure. This 
procedure requires that one of c and d be held fixed, and with 
a bisection root finding routine the other is varied until one of 
the equations is solved. This second parameter is then held 
fixed while the root-finding routine is applied to the other 
equation. This procedure is repeated until the result converges 
to the simultaneous root of the two equations. After the 
simultaneous root of these two equations is found, one row of 
\A can be replaced by the load equation to solve for g. This 
load equation is 

l=L, +L-, (76) 

where Lx is given by the right-hand side of equation (59). The 
contribution to the load by p2 (/) is given by 

L2=— g0- (77) 

After the coefficients in the pressure expansion and the con
tact dimensions have been obtained using the procedures just 
given, the stress intensity factor at the corners of the indenter, 

K, = lim (1 t)W2p(t), (78) 

can be found. The stress intensity factor for the half space 
solution is easily calculated analytically and it is found to be 
0.2250. 

5 Results 
In this section we present the results of the calculations. 

Typical solutions for the three types of contact regions are 
given, then we determine the zones in the parameter space in 
which each solution is valid. After this is done, the contact 
dimensions and other quantities of interest are calculated, and 
the limiting behavior in various cases is discussed. Finally, the 
stress intensity factors are obtained. 
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Fig. 1 Typical solutions for each type of contact region: one contact 
region, h = 0.25, p = 10.0, (solid), two contact regions, A = .75, /t = 15.0, 
(dashed), three contact regions, ft = .25, ( l = 15.0, (dot-dashed). 

The number of geometrical and material parameters in
volved in the solutions is 3A/} + l: the thickness, Poisson's 
ratio and modulus ratio for each layer, and the Poisson's ratio 
of the substrate. To reduce the number of combinations, the 
values of all Poisson's ratios are fixed at 1/3. The behavior of 
the solutions are examined in detail for the case of a single 
layer, but in the two-layer case only the parameter space divi
sions for selected examples are presented. 

5.1 Examples of the Three Solutions. Figure 1 shows 
typical pressure distributions under the indenter for the three 
types of contact regions. The one contact region solution has 
positive pressure over the entire face of the indenter. The two 
contact region solution has contact for 1 > I x I > c, where 
c = 0.666 in this example. The three contact region solution 
has contact for l#l <d and 1 > Ixl >c. Both the two and three 
contact region solutions have regions of zero pressure where 
the surface of the top layer does not contact the indenter. 

5.2 Numerical Accuracy. The numerical schemes 
presented in the earlier sections have several parameters that 
must be determined in order for the solutions to be suitably ac
curate. These parameters are Nh and eh for the layer term in
tegrator and N, the order of the series expansions for g(t). 
The integrator used for the layer term is well behaved and the 
suitable values of the parameters are easily found for accurate 
evaluations. Examination of the values of n(x, t) calculated 
with the integrator shows that the values Nh = 20 and eh = 0.01 
are suitable for all calculations. The number of terms in the 
expansion for g(t) is also important to the speed and accuracy 
of the solution. The suitability of a given value of Nis checked 
by examining the size of the highest order coefficient in the ex
pansion, gN_ j . N= 10 was suitable for all the calculations per
formed here. 

5.3 Parameter Space. For the one-layer problem, the 
two parameters are the layer modulus ratio, p, and thickness, 
h. The subscripts are omitted when only one layer is involved. 
The most important issue is the type of solution as regards the 
number of contact regions for given layer properties. In Sec
tion 4 the conditions for each of the three types of solutions 
were stated. The one contact region solution is valid when the 
calculated pressure is non-negative over the entire face of the 
indenter. Thus, the boundary of this zone is the parameter 
space is characterized by solutions in which the pressure is zero 
at a single point under the indenter. The two contact region 
solution exists when equation (60) has a single root. The boun
dary of this zone in the (^, h) plane is the curve across which 
the number of roots of (60) changes from one to zero or two. 
The three contact region solution is valid in the parameter 
zone where there is a single simultaneous root of equations 
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Fig. 2 The parameter space for a single layer showing the zones of ex
istence of the three types of solutions for >• = >-v = 1/3. The labels are ex
plained in the text and the symbols correspond to the solutions 
presented in Fig. 1. 
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Fig. 3 The values of c = d along the 1-3 boundary (dashed). The varia
tions of c and d with layer thickness along the ji = 15.0 line (solid). The 
2-3 boundary is marked by the triangular symbol. 

(75). Figure 2 shows these zones in the (/z, h) plane. We 
observe that one curve generally separates the zone of lower 
modulus from the rest of the plane. It divides the plane into 
the domains of low-modulus, single-contact-region solutions 
and the high-modulus multiple-contact-region solutions. 
Because all of the modulus ratios shown in Fig. 2 are greater 
than one, it follows that multiple-contact-region solutions oc
cur only when the layer is stiffer than the substrate. The curve 
that is almost parallel to the modulus axis in the high-modulus 
zone divides the multiple-contact-region zone into the two-
and three-contact-region zones. 

The single-multiple contact-region solution separation curve 
in Fig. 2 on which p(t) =0 for some isolated t, can be divided 
into two parts. If, as n increases for fixed h, the zero pressure 
occurs first for t = 0, then crossing the curve in the direction of 
increasing modulus changes the type of solution from one to 
two contact regions. This curve is called the 1-2 boundary in 
Fig. 2. If in this process of increasing /i for fixed h the zero in 
pressure occurs first for t^O, then further increasing the 
modulus causes the solution to change from a one to a three-
contact-region solution. This curve is called the 1-3 boundary. 
The 1-3 boundary occurs for thinner layers than the 1-2 boun
dary. The point at which the 1-2 and 1-3 boundary curves meet 
is also the intersection point with the 2-3 boundary curve, 
which is defined as the curve across which the number of roots 
of (60) changes from one to two. At exactly this triple point all 
three solutions exist for the contact dimensions of c = d = 0. 

5.3.1 Dependence of Contact Regions on the Physical 
Parameters. Obtaining the two- and three-contact-region 

= > 
CO 
CO 

Fig. 4 Comparison of the solutions for the half space case and for 
h = 0.1, ^ = 11.48 

solutions involves finding the contact region as well as the 
pressure distributions. The contact dimensions are easiest to 
determine on the boundaries of the zones in the (n, h) plane. 
At points on the 1-2 boundary the value of c, which deter
mines the point of contact in the outer contact region, is zero. 
The parameter d determines the point of contact in the inner 
contact region of the three contact region solution. On the 1-3 
boundary, c is equal to d and they can be determined by 
finding the point at which the pressure first becomes zero as 
the modulus is increased for fixed h. Along the 2-3 boundary 
the value of c must be determined by finding the root of (60), 
and the value of d is zero. 

The dependence of c and d on the layer properties will be 
discussed next. Figure 3 shows the common values of c = d ver
sus the layer thickness along the 1-3 boundary. As the layer 
thickness approaches zero, the value of c = d approaches uni
ty. Figure 4 shows the contact pressure for the point on the 1-3 
curve in Fig. 2 corresponding to h = 0.1. It also shows for com
parison the contact pressure for the half space solution (h = 0). 
As can be seen the pressure is close to the half space solution 
away from the corners of the indenter. As A—0 the point zero 
pressure moves to the corner and the solution approaches the 
half space solution over the entire indenter in a somewhat 
singular manner. The size of the region near the corner where 
the layer has a large effect is on the order of the layer 
thickness, indicating a boundary layer type of phenomenon. 
The convergence to the half space solution is nonuniform, 
because for any finite layer thickness there is always a large 
difference in the solutions near the corner. For a given layer 
thickness this difference is proportional to the modulus ratio 
of the layer, but there is no difference for a modulus ratio of 
unity. 

Referring again to Fig. 2, d is zero on the 2-3 boundary and 
moving away from this curve by decreasing h while holding fi 
fixed causes d to increase. The dependencies of both c and d 
on h along the JX= 15.0 line in the parameter space of Fig. 2 are 
also given in Fig. 3. The contact dimension d is zero until the 
2-3 boundary is crossed, marked by a triangle at the cor
responding c value. As the layer thickness decreases the con
tact dimensions both approach one, exhibiting the same type 
of behavior in the contact pressure as seen in Fig. 4 along the 
1-3 boundary curve. 

At points on the 2-3 boundary in the (/*, h) plane, the con
tact dimension, d, is zero. Figure 5 shows the value of c versus 
layer modulus, found along the 2-3 boundaries as shown in 
Fig. 2. As the layer modulus increases, c approaches 1, that is, 
the extent of the contact goes to a point at the corner of the in
denter. This is also the case for any fixed value fo h as /*—• oo, 
not just along the 2-3 boundary. This is also shown in Fig. 5 
for the case of h = 0.5. This means that regardless of the values 
of h, the contact can be forced to the limiting case of only 
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Fig. 5 The contact dimension c versus modulus along the 2-3 boun
dary (dashed). The variation of c and d with layer modulus along the 
h = 0.5 line (solid). The square symbol marks the 1-3 boundary, and the 
triangular symbol marks the 2-3 boundary. 
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Fig. 6 The simultaneous root of equations (75), (c,d), for various layers. 
The layer modulus is constant along the solid lines and the thickness is 
constant along the dashed lines. 

point contacts at the corners of the indenter if the layer 
modulus is made sufficiently large. In Fig. 5, the values of c 
and d are equal at the 1-3 boundary, marked with the square 
symbol (see also Fig. 2). As the modulus increases from this 
point, d decreases and c increases. The 2-3 boundary in Fig. 2 
has a slight negative slope. Thus, increasing the modulus at 
constant thickness will eventually result in a crossing of the 2-3 
boundary. There the value of d becomes zero at the 2-3 boun
dary, but c continues to increase from this point, which is 
marked with a triangle, as the modulus increases. The 
behavior of the solution as /x—oo was just discussed. 

The dependence of the contact dimensions c and d on h and 
H can also be displayed by marking the locations of the roots 
of equations (75) in a (c, d) plane for various combinations of 
the layer thickness and modulus. Figure 6 presents such a plot. 
Five values of the layer modulus are represented by the solid 
lines, along which the layer thickness varies. Along the dashed 
lines the layer thickness is held constant while the modulus is 
varied. The c = d diagonal is the 1-3 boundary in the ix versus 
h space of Fig. 2. The 2-3 boundary is the d=0 axis. The 
c = d= 1 point corresponds to the limit as the layer thickness 

TOP LAYER MODULUS 

Fig. 7 The parameter space divisions for a midlayer modulus of 0.25 
and thicknesses of oo, 1.0, 0.5, and 0.0 
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Fig. 8 The parameter space divisions for a midlayer thickness of 1.0 
and moduli of 0.25, 0.5, and 1.0 

goes to zero. The c = d = 0 point is the intersection point of the 
1-3, 1-2, and 2-3 boundary curves in Fig. 2. 

5.3.2 The Effect of a Second Layer. In the previous sec
tions we considered the case of a single layer bonded to a 
substrate. In this section the (/x, h) parameter space divisions 
for two layers will be examined. We only consider middle 
layers with moduli less than one. Thus the shear moduli of the 
middle layers are less than that of the substrate. The top layer 
must be stiffer than the effective modulus of the midlayer 
substrate combination for multiple contact region solutions to 
exist, however, the minimum top layer modulus necessary for 
multiple contact decreases for increasing middle layer 
thickness. If the middle layer is infinitely thick this minimum 
modulus is reduced, compared to the case of no middle layer, 
by a factor equal to the midlayer modulus. This can be seen in 
Fig. 7, which presents the results for a middle layer with 
/x2 = 0.25. The right-most curves are the results for a single 
layer, hx =0. The left-most curves are for infinite midlayer 
thickness, which agree with the one layer results with the 
modulus reduced by a factor of 0.25. The intermediate curves 
are for midlayer thickness of 1.0 and 0.5. The results for all in
termediate thickness will lie between the curves for zero and 
infinite thickness. A feature of interest is that the 1-3 portions 
of the curves for the intermediate thicknesses of the midlayer 
approach the 1-3 curve for an infinitely thick midlayer as the 
top layer thickness goes to zero. This is the expected behavior 
because as the top layer becomes thinner, a finite thickness 
midlayer becomes relatively thicker and influences the solu
tion to a greater degree. 

If the thickness of the midlayer is fixed and the parameter 
space curves are found for various moduli of the midlayer, the 
results obtained are as shown in Fig. 8. In this figure the right
most curves are the single layer results, since the midlayer has 
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Fig. 9 The stress intensity factor at the corner of the indenter for a 
single layer of thickness h = 0.5. The symbols correspond to the boun
daries in Fig. 2. 
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Fig 10 The stress intensity factor at the corner of the indenter for a 
single layer of modulus // = 15.0. The triangle marks the 2-3 boundary in 
Fig. 2. 

a modulus of one. As the modulus of the midlayer is reduced 
from one, the top layer modulus at which multiple contact 
region solutions exist is decreased. The division between the 
low-modulus, single-contact-region zone and the high-
modulus, multiple-contact-region zone in the limit of zero 
midlayer modulus can not be to the left of the straight line 
Hi =0.0. This will be the dividing line for thin layers and for 
thicker layers the layer will have to have a correspondingly 
higher modulus. Plate theory predicts the behavior of the thin
ner layers. 

5.4 Stress Intensity Factors. The stress intensity factors 
defined in equation (78) are a measure of the strength of the 
pressure singularity at the corners of the indenter. A common 
use of stress intensity factors is in problems involving cracks in 
linearly elastic material. Figure 9 shows the stress intensity fac
tor versus layer modulus for a single layer of thickness 0.5. As 
the layer modulus is increased, the stress intensities increase. 
The square symbol corresponds to the 1-3 boundary and the 
triangular symbol occurs at the 2-3 boundary in the (ft, h) 
parameter space of Fig. 2. Since the contact dimension c ap
proaches one as the layer modulus increases for fixed layer 
thickness, the increase in stress intensity factor is expected 
because the load is carried by a smaller region. Figure 10 
shows the variation in the stress intensity factor with layer 
thickness for a fixed layer modulus of 15.0. An infinitely thick 
layer gives the result for a half-space of modulus 15.0. A layer 
thickness of zero recovers the half-space result of 1.0. 

6 Summary and Conclusions 
The effect of one or more layers on the solution for contact 

by a flat smooth indenter is presented. For such a layered 
structure the solution may have one, two, or three contact 
regions under the indenter and the choice is determined by the 
layer's elastic properties and thickness. The parameter space 
of layer modulus versus layer thickness is divided into three 
zones, corresponding to the three types of solutions. For 
multiple-layered structures, the solution depends on many 
parameters. If only the top layer's parameters are varied, the 
parameter space divisions are very similar to the single layer 
case. Only the modulus at which the transitions between solu
tion types is affected, because the effective modulus of the 
foundation under the top layer is changed. 

The parameter space for a single layer is divided into three 
zones. In each zone the contact configuration is different. For 
low moduli layers there is only one contact region, the entire 
face of the indenter. Depending on the layer thickness, two 
contact regions are possible for stiffer layers. Here, for 
thickness layers the two contact region solution is valid, for 
thinner layers the three contact region solution exists. On the 

boundaries of these zones in the parameter space, where two 
solutions are valid simultaneously, the various pairs of solu
tions agree. 

The contact regions under the indenter were completely 
determined for the two and three contact region solutions. The 
limits of zero layer thickness and infinite layer modulus agree 
with expectations. This leads to the conclusion that only one, 
two, or three contact region solutions are possible for this 
problem. As the thickness of a layer of fixed modulus 
decreases, the solution approaches that for a half space. 
However, this limit is approached in a nonuniform manner. 
Boundary layer phenomena exist near the corners of the in
denter, where the solution for a thin layer always differs from 
the half space solution by a large amount, while away from the 
corners the difference is small. An asymptotic analysis of thin 
layer behavior of this problem may be of interest. As the 
modulus increases, for a layer of fixed thickness, the contact 
region shrinks until only the region very close to the corners is 
in contact with the layer surface. This limit agrees with the 
result predicted by plate theory. 
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A P P E N D I X 

Listed here are the coefficients in the analytical solution for 
the Green's function for a single layer on a half space. The 
modulus ratio for the single layer is a, where 

a3 = 2(4a2i>2 — 7a2v + 3a2 - Aav2 - Auvvs 

+ 10aj/ + Aavs - 6a + 4vvs -3v-Avs + 3) (A4) 

(3, = {Aa2v- 3a2 - \6avvs + 12ae + 12aj>s - 10a + Avs - 3) (A5) 

AM 
(Al) 

al = 2( —4a2p2 + 7a2j< —3a2 + \6av2vs— Ylav2 

P2 = 4( - a2 + 4aj>s - 2a - Avs + 3) 

/33 = 2( - 8a2c2 + 12a2 v - 5a2 + %uvvs -Aav 

- Aavs + 2a - 4es + 3) 
- 2Saups + 22av + \2ctvs - 1 0 a - Avvs + 3v + Avs - 3) (A2) 

ci2 = 8( — a2v + a2 + Aavvs — 2av — Aavs 

+ 2 a - 4 ^ + 3c + 4 c i - 3 ) (A3) 0A = (Aa2v-3a2-Aav-Aavs + 6a + Avs-3) 

(A6) 

(A7) 

(A8) 
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On the Flexure of a Partially 
Embedded Bar Under Lateral 
Loads 
This investigation is concerned with a laterally-loaded bar which is partially embed
ded in a three-dimensional elastic half space. The loading is assumed to be applied at 
the unembedded end of the bar and may, in general, be a combination of horizontal 
shear forces and moments. On the adoption of a one-dimensional theory for the bar 
and the classical theory of elasticity for the semi-infinite solid, the structure-medium 
interaction problem is reduced to a Fredholm integral equation of the second kind 
whose solution is then computed. Selected results are presented to illustrate various 
features of the solution. A set of compliance charts is also included. 

1 Introduction 

Analysis concerning the deformation of a partially embed
ded bar in an elastic half space under external loads is relevant 
to a number of engineering applications. In civil engineering, 
this class of problems is closely related to the mechanics of 
piles and anchors used in foundation designs. In the context of 
solid mechanics, this type of investigation is conducive to a 
better understanding of the behavior of fiber-reinforced com
posites, to which the load transfer characteristics between the 
matrix and the reinforcement is of importance. The underly
ing mechanical interaction between an embedded bar and its 
surrounding medium depends on the properties of both media 
and, in particular, on the mode of deformation as induced by 
the external forces. Of interest in this paper is the response of 
the system under the action of asymmetric loadings such as 
those incurred by lateral forces and moments. 

Owing to various analytical difficulties, rigorous attempts 
to this class of three-dimensional load diffusion problems 
have been limited. On the axisymmetric problems of axial ex
tension and torsion, the works by Luco (1976) and Luk and 
Keer (1979) are some of the noteworthy contributions. For 
simplicity, the embedded bars in these studies are assumed to 
be rigid. As a consequence, the influence of the deformability 
of the embedment on its mechanical interaction with the sur
rounding medium has not been addressed. The general need to 
account for the foregoing aspect in practical problems, 
however, is illustrated in the treatment of Muki and Sternberg 
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(1969) on an axially-loaded infinite rod embedded in a 
medium of infinite extent. Of greater importance, though, is 
their subsequent contribution to the more difficult problem of 
axial load diffusion from a partially embedded rod in a semi-
infinite medium (Muki and Sternberg, 1970). In that treat
ment they have shown that it is possible to obtain a consistent 
formulation for the structure-medium interaction problem on 
the occasion that the engineering approach of treating the rod 
as a one-dimensional elastic continuum is adopted. The 
present work is an effort in the same direction. 

This paper is concerned with the analysis of the response of 
a partially embedded bar under lateral loadings. A 
mathematical formulation for the structure-medium interac
tion problem is presented in Section 2 which culminates in a 
derivation of the governing Fredholm integral equation. An 
important ingredient of the analysis is an influence field which 
describes the response of an elastic half space to the action of 
an internal, distributed, horizontal body-force field. By a 
method of strain potentials, the required result can be derived 
in closed form, the details of which is furnished in Section 3. 
In Section 4, illustrative numerical results based on the solu
tion of the Fredholm integral equation are presented. 

2 Mathematical Formulation 

In this section a mathematical formulation is presented for 
the structure-medium interaction problem under considera
tion. To this end, a rectangular Cartesian coordination frame 
(0; Xi, x2, XT, ) is used that spans the three-dimensional Eucli
dean space E. The position vector of points in E is denoted by 
x = (xx, x2, x3) and the unit base vectors in the xr, x2-, Xy 
directions are designated by e,, e2, e3, respectively. 

In this investigation, one considers a circular cylindrical bar 
B of length L and radius a, whose longitudinal centroidal axis 
is coincident with the x3-axis (see Fig. 1). For reference, the 
open cross-sectional region of the bar is denoted by II; the 
open half space is defined by H= {x \xeE, x3 >0); the cylin-
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Fig. 1 Bar and medium configurations 

drical subdomain of H occupied by the bar is designated by 
D= (x \(xu x2}ell, 0<x} <L\\ and the open cross-section of 
D located at x3=z is labeled as Ilz = {x l ^ , x2)ell, x3 = z}. 
The loads under consideration are assumed to be applied at 
the top end of the bar and may, in general, be a combination 
of a lateral shear force VQ and a moment M0 acting in the 
x{-x3 plane. The present treatment aims at a bar whose 
diameter or lateral dimension is suitably small compared to 
the length of embedment. As in the treatment by Muki and 
Sternberg (1970), the embedding medium is extended 
throughout the half space H, and an elastic body S with the 
same material properties as the original material is assumed to 
occupy this extended region. To account for the presence of 
the embedded bar, a fictitious reinforcement 5* is introduced 
throughout D such that the composite solid occupying the 
region is equivalent to the actual embedment. Since flexure is 
the mode of deformation under consideration, equivalence is 
taken to mean that the reinforced region will have the same 
flexural properties as B. Accordingly, for a solid bar the rein
forcement B„ is assigned a Young's modulus of 

Et=Eb-Es>0 (1) 

where the subscripts b and 5 denote the corresponding quan
tities of the bar and of the embedding medium, respectively, 
(see Fig. 2). In what follows, the extended medium is treated 
as a three-dimensional continuum within the framework of 
linear elastostatics. In contrast, the reinforcement B* is 
regarded as a one-dimensional elastic structure. On the adop
tion of the Bernoulli-Euler bending beam theory for its 
behavior, B* is governed by the constitutive relation 

cfut(z) 
EJ d*y=M,(.z), 

and the equilibrium equations 

dMM 

dz 

dK(z) 

dz 

= K.fe), 

= -P*(z), 

(3) 

(4) 

3. On the basis of the response of the reinforcement, the 
response of the embedded bar can be obtained, within the ap
proximation under consideration, as the sum of those of Bt 

andZX Specifically, one may write 

M(z) = M , (z) - 1 <r33 (X)AT, dA 

V(z)=V,(z)- o3l(x)dA. 

(5) 

(6) 

Here, M(z) and V(z) denote the bending moment and internal 
shear in the bar B, respectively; a^ are the components of the 
Cauchy stress tensor associated with the extended medium. 

For a proper account of the interaction forces between the 
bar and the medium, it is important to first introduce the no
tion of direct load transfers which may occur at both ends of 
the embedment. Here, direct load transfer refers to the direct 
transmission of loads from the bar to its embedding medium 
through concentrated bond forces. The possibility of such 
mechanisms arising in load transfer problems is first suggested 
by Reissner (1940) and later clarified by Muki and Sternberg 
(1968). Providing for this possibility while treating the cir
cumferential surface of the bar as frictionless, one may con
sider the external forces acting on Bt as composed of: (i) 
-p*(z)e,, the distributed normal force per unit length exerted 
by S on B„, (ii) K„(0 + )ei, the resultant shear force at the top 
of the bar after a possible direct shear transfer, (Hi) 
-M„(0 + )e2, the resultant bending moment at the top end of 
the bar after a possible direct moment transfer, (iv) 
- Vt(L)e1, the terminal shear force at the bottom end of the 
bar, and (v) Mt,(L)e2, the terminal moment at the bottom of 
the bar (see Fig. 4). In accordance to the foregoing account 
and the law of action and reaction, the forces acting on the 
half space are: (i)pt(z)e\, (ii) [V0 - Vt(0

+ )]ei, the direct shear 
transfer to the half space from the bar at n 0 , (Hi) 
- [ M 0 - M t ( 0 + ) ] e 2 , the direct moment transfer to the half 
space from the bar at n 0 , (iv) K„(Z,)e1, the terminal shear 
transfer from B„, and (v) -M„(L)e2 , the terminal moment 
transfer from Bt. If the additional assumption of small cross-
sectional rotation of the bar is made, the analysis can be 
simplified further as the effects of the direct moment transfers 
at the ends become negligible. In such circumstances, it is thus 
reasonable to assume that 

Mt(L) = 0, (7) 

(2) and 

Af(0)-M,(0 + ) = 0. (8) 

where the notation and sign conventions are explained in Fig. 

For the description of the response of the extended medium 
to the foregoing interaction forces, it is convenient to employ 
an influence field Uj(x;s) which is defined as the displacement 
at a point xeS due to a suitably distributed body-force field on 
n s , acting in the x, -direction, with a unit resultant (see Fig. 5). 
As the in-plane stiffness of the cross-section of the bar is 
usually substantially higher than that of the medium in most 

REINFORCEMENT^ 

—#-Xt 

X3 

(a) (b) 

Fig. 2 Formulation of problem 

X3 

X|,U« 

M* if A M,+ dM» 

U« vs |-dZH Vi+dV, 

AN ELEMENT OF B„ 

0 X3,Z 
Fig. 3 Beam theory for B t 
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Mo/-*] Reduction to a Fredholm Integral Equation. By virtue of 
(4), (12) can be written as 

ut(z) = [V0- Vt(p
 + )]ul(z;Q) + Vt(.L)ux(z\L) 

* - X I 

- s : dV„(s) „ 
-ux{z;s)ds, 0<z<Z, . ds 

(13) 

**ML-) 

x3-z 
Fig. 4 Forces on B4 and sign conventions 

applications, the body-force field distribution corresponding 
to a laterally-loaded rigid disc embedded in an elastic medium 
is adopted in this treatment. With the aid of the foregoing in
fluence field, the displacement in the half space can be written 
as 

ui(x)= [V0- K.(0+)]w,(x;0) + K.(L)«,(x;Z.) 

+ 1 pt(s)U:(x;s)ds, xeS. (9) 
Jo 

In particular, along the centroidal axis of the bar where 
x = (0,0,^3), the displacement in the *, -direction is 

Uiix3) = [V0- F t(0+)]«1(x3;0)+ V^Du.ix^L) 

With proper account of the discontinuity of the integrand dur
ing an integration by parts, one can show that (13) yields, 
upon application of (7) and (8), 

ut(z)=V0ul(z;0)-M0^-(z;0)-Mt(z)[^-(z;s)Yz_ 

fL d2u, 
- M,<d—Mzv)ds,0<,zzL. (14) 

Jo ds* 

With the aid of (14) and the representation of ut as 

«.(«)= " j f l g(z\s)Mt{,s)ds+uM^-~)+ut{L)(-^j 

where 
(15) 

g(z;s) = 
EJ 

z<s 

z>s 

(16) 

+ p&yii^Xi&ds, 0<x 3 
Jo 

(10) 

To render the deformation of 5* compatible with that of S, 
the imposition of a suitable bond condition is necessary. To 
this end, the requirement is adopted that the lateral displace
ment of the bar and the half space be equal along the x3-axis 
over the length of embedment; i.e., 

ut(x3) = ui(x3), 0 < * 3 < L . (11) 

In addition to its intuitive appeal, this condition leads to, as 
will be shown later, a governing equation which is amenable to 
simple treatments. 

With the aid of (10), the bond condition (11) can be written 
as 

u,(z) = [V0- K,(0 + )]w,(z;0) + V.{L)uAz\L) 

the structure-medium interaction problem under considera
tion can be reduced to a single equation. For further con
siderations, however, it is appropriate at this point to for
mulate the analysis in dimensionless form. To this end, the 
following dimensionless parameters are defined: 

-=—• --_£_• i-—- F- Eb • - 8 

Z ~ a ' S ~ a ' ~ a ' ~ ~ E T : K~ (\ + vs)(E^l)'' 

M n 

4-n>isa
i -; M= 

M. 

Vn=-
A-nnsa- -; v= 

47r/nsa
3 

V. 
ATTfisa

2' 

•; u-
u* 

(17) 

+ \ pt(s)u,(z;s)ds, 0 < Z < L . 
Jo 

(12) 

Equation (12) represents the primary governing equation for 
the structure-medium interaction problem under consider
ation. 

In the above, ns and vs are the shear modulus and the 
Poisson's ratio of the embedding medium, respectively. In 
terms of these parameters, the governing equation that fully 
describes the problem under consideration can be expressed as 

A(z)M(z) + B(z)u(Q) + C{z)u{L) + f K{z;s)M(s)ds 

= V0U(z;0)-M0-—(z;0), 0 < z < Z , 
8s 

where 

A(z) -[• 
317 

ds 
<z,s) 

DISTRIBUTED 
BODY-FORCE 
FIELD 

HALF-SPACE C{z) = -j-, G(z;s) = 

x3 ,z 
Fig. 5 Problem definition for influence field u,(x;s) 

0-4)* 

z<s 

z>s 

(18) 

(19) 

(20) 
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U(z;s~) = 4irixsaul(z;s), 

d2U 
K(z;s)--

ds2 -(Z;S~)-KG(Z;S). 

(21) 

(22) 

The integral equation in (18) is one of Fredholm's second 
kind, the solution of which furnishes the bending moment and 
the top and bottom displacements of B*. In turn, they render 
the response of the whole system determinate by virtue of (2) 
to (9). 

3 Influence Field 

To determine the influence field iii(z;s) required in the 
preceding formulation, it is convenient to employ a procedure 
based on the strain-potential approach proposed by Muki 
(1960) for asymmetric problems in the theory of elasticity. As 
a specific reduction of the general Boussinesq-Somigliano-
Galerkin solution in the classical theory, the method entails 
representing the solutions to the displacement equations of 
equilibrium for an elastic medium with vanishing body forces 
in terms of a biharmonic function <b(r,d,z) and a harmonic 
function ~fy(r,d,z), i.e., 

V4<K/-,0,z) = O, V2*(r,6U) = 0, (23) 

where 

V 2 V 2 V 2 = 1 
dr2 r 

d 1 

"a7+72 
d2 d2 

~W + dz2 
(24) 

in circular cylindrical coordinates. To obtain the solution of 
interest, proper account must be given to the traction-free 
boundary conditions at z = 0, the regularity conditions at in
finity, and the stress discontinuities induced by the distributed 
body-force field acting on IIS, i.e., 

du{r,e,0) = orz(r,6,Q) = aze(r,d,0) = 0, Vr,0 (25) 

<7—0, Vr2+Z2 — oo; 

dzr(r,6,s-)-ozr(r,6,s+) 

-cosS, (r,0)€ll. 

(26) 

(27) 

aa(r,9,s )-az6(r,6,s+) 

27raVa2 
-sin0, (r,fl)6n, (28) 

On the assumption that the stresses and displacements are con
tinuous throughout the medium except for those specified in 
(27) and (28), it can be shown, with the aid of Hankel 
transforms and the foregoing method of potentials, that the 
requisite dimensionless influence function U admits the 
following integral representation: 

U(z;s) = j o " [^(fle-Wi + £ ( O e ^ d 2 ] ^ p U 

where 

A(l) = -
1 

8O-1O 
{ ( 7 - 8 * , ) - & / , ) , 

W) = 
{(9 - 16i>, + &P2

S) - (3 - Av,)jd2 + 2?zsd2) 

8 ( 1 - O 

di=\z-s\, d2 = (z + s). 

(29) 

(30) 

(31) 

(32) 

Involved in (29) are integrals that can all be evaluated in terms 
of elementary functions. Accordingly, one finds 

U(z;s)--
1 

8(1-*,) 

(7 - 8i»,)tan-' ( - J - ) + ( 9 - 16^ + 8.2)tan- ' ( - J - ) 

(1+d?) 
- ( 3 - 4 v , > 

4zsd, 

(l+cP2) (l+cP2Y 

(33) 

By virtue of (33), the derivatives of U(z\s) required in the for
mulation can also be computed in closed form. In addition to 
its mathematical appeal, this distinctive feature renders an ac
curate solution of the integral equation a straightforward 
process. 

4 Illustrative Results and Discussion 

In view of the simplicity of the governing Fredholm integral 
equation, it suffices to employ ordinary quadrature methods 
for the numerical solution of (18), provided proper attention is 
given to the localized nature of the functions involved (Pak 
and Jennings, 1987). As illustrations, solutions for the shear-
loading-only and moment-loading-only conditions are 
presented in Figs. 6 and 7, respectively. As can be observed 
from the figures, all solutions exhibit smooth variations 
throughout their intervals of definition. The bending moment 
M of the bar under shear loading condition (see Fig. 6(a)) 
typically reaches its peak value within the top half of the bar 
although the precise location of its occurrence varies with the 
bar-to-medium modulus ratio E. In contrast, the maximum 
moment is found to occur consistently at the top of the bar for 
the moment loading condition as is evident from Fig. 7(a). 
While it is probably more apparent in the moment loading 
case because of scaling, one common feature between the ben
ding moment profiles under both shear and moment loadings 
is a definite reversal of sign at some depth for bars that are not 
too rigid. This is particularly interesting in view of the con
spicuous absence of such a characteristic in some existing 
numerical treatments of the problem (e.g., Poulos and Davis, 
1980). The slopes of the bar for the two loading conditions are 
shown in Figs. 6(b) and 1(b), while the corresponding deflec
tion profiles are illustrated in Figs. 6(c) and 7(c), respectively. 
In accord with the reciprocal theorem in linear elastostatics, 
the top rotation due to a unit horizontal force is found to be 
identical to the top displacement due to a unit applied moment 
for the whole range of modulus ratios. 

To ascertain the possible existence of direct load transfers at 
the ends of the embedded bar as alluded to earlier, it is rele
vant to examine the limiting values of V(z), the internal shear 
of the bar, as z tends to 0 + and L~, respectively. On the basis 
of the results that 

JH0H 
dii(x;0)dA=-l, (34) 

ff3,(x;s) = 0, xen 0 l 5>0 , (35) 

it can be shown directly from (6) that V(0+) is equal to V0. 
Thus, in contrast to the findings of Muki and Sternberg for 
plane problems, there is no concentrated load transfer occur
ring at z = 0 according to the present treatment. On the other 
hand, a portion of the applied load is often transmitted direct
ly to the embedding medium through the terminal section, as 
V(L~) is found to be nonvanishing in general. 

In this connection, it is also of interest to examine the 
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behavior of B„ in a similar context because B„ is frequently 
regarded as the actual bar itself in numerous existing analyses. 
To facilitate the examination of the limit of Vt(z) as z — 0+ , it 
is useful to observe that (18) yields 

1 (-(»(£)-u(0)) T> 

T K 0 V{z)-- A I 
dU 

dz 

- d'U CL dK - --) 
(36) 

where 

dK 

dz 
<z;s)--

d3U 

dzds1 iz;s) 
dG ,- -, - K——-(.Z;S), 
dz 

dG 

dz 
(z;s) = 

s 

T 

-,z<s 

z>s 

(37) 

(38) 
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On the basis of (36) and the solution of (18), it can be shown 
that K„(0) is in general not equal to V0; moreover, their dif
ference increases as E decreases. This is further supported by 
the direct deduction from (1), (2), (9), and (18) that the 
response of the reinforcement must vanish as E— 1 (i.e., the 
case where the moduli of elasticity of the bar and the 
surrounding solid are identical). On the latter occasion, the 
present formulation thus correctly indicates that the applied 
loads are to be transmitted directly to the embedding medium 
at the surface level. The implications of the general presence 
of such a direct load transfer at z = 0 as a consequence of the 
simplistic assumption of Bt as B should warrant some 
attention. 

In many engineering applications, the quantity of primary 
concern is the relationship between the top response of the bar 
and the applied loads. The desired correspondence can be ex
pressed as 

c c 

V0 

M0 

where 

A = w(0), 9 = du 
dz 

-(0). 

(39) 

(40) 

The compliance functions Cvu, Cvm, and Cmm are given for a 
range of physical parameters in Figs. 8 to 10 where the 
logarithm scales are to the base 10. The function Cmv is not 
presented because it is found to be identical to Cvm as alluded 
to earlier. To gain some perspective on the quality of the pre
sent result, it is useful to contrast it with some existing work 
on this structure-medium interaction problems, such as the 
one by Poulos (1971) and Poulos and Davis (1980). As is evi
dent from Fig. 11 where the comparison is shown, there is a 

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

Log E 
Fig. 10 Compliance function C m m 

general departure of Poulos' result from the present solution 
except for a limited range of intermediate modulus ratios. The 
deviation is particularly serious at low values of E where the 
former analysis also fails to reveal the proper qualitative 
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behavior expected of a rational solution. Here, reference is 
made to the divergence of Poulos' result for bars of different 
lengths as E— 1. To a lesser extent, a loss of accuracy in the 
solution under comparison is also observable as E-><x>. This 
can be due to the increasing significance in such an event of 
the terminal direct shear transfer at ITL, which has not been 
properly accounted for in the aforementioned study. 

5 Summary and Conclusions 

A rigorous analysis is presented on the elastostatic response 
of a partially embedded bar under lateral loadings. By treating 
the bar as a one-dimensional continuum and the embedding 
half space as a three-dimensional elastic solid, the structure-
medium interaction problem is formulated as a Fredholm in
tegral equation of the second kind whose solution is then com
puted. In addition to furnishing a set of compliance functions 
which are directly useful in many applications, the present 
treatment is apt to be of value as a basis upon which approx
imate and numerical endeavors to this problem can be 
assessed. 
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Kinking of a Crack Out of an 
Interface 
Kinking of a plane strain crack out of the interface between two dissimilar isotropic 
elastic solids is analyzed. The focus is on the initiation of kinking and thus the seg
ment of the crack leaving the interface is imagined to be short compared to the seg
ment in the interface. Accordingly, the analysis provides the stress intensity factors 
and energy release rate of the kinked crack in terms of the corresponding quantities 
for the interface crack prior to kinking. Roughly speaking, the energy release rate is 
enhanced if the crack heads into the more compliant material and is diminished if it 
kinks into the stiff material. The results suggest a tendency for a crack to be trapped 
in the interface irrespective of the loading when the compliant material is tough and 
the stiff material is at least as tough as the interface. 

1 Introduction and Form of the Solution 

A fracture mechanics of interfacial separation is beginning 
to emerge, although there are still conceptual difficulties to be 
overcome associated wtih the nonstandard oscillatory square 
root singularity of some interface cracks. In this paper an 
analysis of a crack kinking out of an interface is carried out 
with the aim of providing the crack mechanics needed to assess 
whether an interface crack will tend to propagate in the inter
face or whether it will advance by kinking out of the interface. 
The geometry analyzed is shown in Fig. 1. The parent inter
face crack lies on the interface between two semi-infinite 
blocks of isotropic elastic solids with differing elastic moduli. 
A straight crack segment of length a and angle co (positive 
clockwise) kinks downward into material 2. The length a is 
assumed to be small compared to the length of the parent in
terface segment of the crack, and thus the asymptotic problem 
for the semi-infinite parent crack is analyzed. The stress field 
prior to kinking (a—0) is therefore the singularity field of an 
interface crack characterized by a complex intensity factor, K 
= K{ + iK2, to be specified precisely. The crack tip field at the 
end of the kinked crack is characterized by a combination of 
the standard mode I and mode II stress intensity factors, Kt 
and Ku. The analysis provides the relationships among KY and 
Kn for the kinked crack and K{ and K2 for the interface crack 
as dependent on the kink angle to and the material moduli. The 
energy release rate of the kinked crack is also related to the 
energy release rate of the interface crack. Limiting results for 
the case when the moduli differences across the interface 
disappear are compared with previously published work on 
kinked cracks. 

The remainder of this section is used to completely specify 
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the functional form of the relationships sought. The numerical 
analysis is given in the next section and results and discussion 
are given in Sections 3 and 4. Section 2 containing the analysis 
may be skipped if one is primarily interested in the results. 

Although there are three independent nondimensional 
material moduli parameters, Dundurs (1969) has shown that 
for problems of this class the solution depends on only two 
special parameters which in plane strain are 

« = [ G 1 ( 1 - P 2 ) - G 2 ( 1 - K , ) ] / [ G 1 ( 1 - V 2 ) + G 2 ( 1 - * 1 ) ] (1) 

/3 = ~ lGl{l-2v2)-G2(l~2ul)] 

/[G,(l-»2) + G 2 ( l -^ ) ] (2) 
where G and v are the shear modulus and Poisson's ratio and 
the subscript identifies the material as indicated in Fig. 1. Both 
a and /3 vanish when the dissimilarity between the elastic prop
erties of the two materials vanishes and they change sign when 
the materials are interchanged. 

The stress field for the semi-infinite interface crack (a = 0) 
has the form 

Fig. 1 Geometry of kinked crack 
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aaf)=Re{K(,2Trr)-i/2r"5a0(e)) (3) 

where ; = V - 1, r and 6 are planar-polar coordinates centered 
at the origin, K ± Kx + iK2 is the complex interface stress in
tensity factor, and . 

The angular dependence aa/3(6) is complex in general, but 
universal for a given material pair. On the interface ahead of 
the tip the tractions are 

022 + i<jn=K(2irr)-mrk. (5) 

The notation and normalizations for the interface crack used 
here follow those introduced by Rice (1987) and Hutchinson, 
Mear, and Rice (1987) which, in turn, are based on the early 
papers on the subject by England (1965), Erdogan (1965), and 
Rice and Sih (1965). The interface intensity factors are defined 
so that A"(~Kl and A"2—A"n when the dissimilarity between 
the elasticity of the two materials vanishes. Note also that 
when |8 = 0 and thus e = 0, A", measures the normal component 
of the traction singularity acting on the interface while K2 

measures the shear component with the standard definitions 
for an intensity factor. 

The complex interface factor K = A", + iK2 is taken as the 
prescribed loading parameter in the present study. For a 
specific interface crack problem, K will necessarily have the 
dimensional form 

K=K1+iK2 = (applied stress) 'LU2L~ UF (6) 

which follows from its definition in equation (5), where L is a 
length quantity such as crack length or ligament length and F 
is a dimensionless function of the in-plane geometry and 
material moduli. Examples of specific solutions for K can be 
found in the aforementioned references. 

The singular field at the tip of the kinked crack in material 2 
is the classical field with conventional stress intensity factors 
Kx and Kn such that 

* 2 ' 2' + » i ' 2' = (*i + >Kn ) ( 2 * * , ) " m (7) 

on the line ahead of the tip (xx' > 0 , x2' =0). 
As already stated, the problem considered is the asymptotic 

one where a is small compared to all relevant in-plane length 
quantities (in particular, compared to L) so that the interface 
crack is taken as semi-infinite with stresses which remotely 
asymptote to (3). The relationship between the intensity fac
tors of the kinked crack and the prescribed complex interface 
intensity AT specifying the remote field can be written as 

A'i + ;A'II=c(co,Q:,i3)A'a''e+J(co,a,lS)A%a-;e (8) 

where ( ) denotes complex conjugation and c and d are 
complex-valued functions of co, a, and /3.1 The argument justi
fying (8) is as follows: The factors A"i and Kn have dimen
sions of stress • (length)172 while AT has the form (6). By dimen
sional considerations, a must combine with K as Ka* or its 
conjugate, since in the asymptotic problem a is the only length 
quantity other than the length quantities implicit in K in (6). 
Equation (8) is a general representation of Kx + iKn consis
tent with this observation and with linearity. Use of d in (8) 
(rather than d) is purely for convenience. When e = 0, as when 
the material dissimilarity vanishes, or just when |8 = 0, the real 
and imaginary parts of (8) become 

A"i = (c«+tf«)A"i-(ci+rf,)A"2 (9) 

Ka = (cl-dl)Kl + {cR~dR)K2 (10) 

where c = cR + ic1 and d = dR + idx. This form is equivalent to 

In this paper the focus is on plane strain behavior. However, the results 
presented for the stress intensities are valid for plane stress as well when a and /3 
are evaluated using plane stress formulas. 

4 

a/L 
Fig. 2 Schemalion variation of energy release rate with length of kink
ed segment of crack for /3 ^ 0 

that employed by Bilby, Cardew, and Howard (1977) and 
Hayashi and Nemat-Nasser (1981) in reporting results for the 
homogeneous kinked crack problems which will be discussed 
in Section 2. 

In plane strain, the energy release rate Go of the interface 
crack advancing in the interface is related to K by (Malyshev 
and Salganik, 1965) 

g0 = [(1 - y , ) /G, + (1 - x2)/G2]A"A7(4cosh27re) (11) 

in the new normalization. The energy release rate Q of the 
kinked crack (« > 0) is given by 

g = [(l-»-2)/(2G2)](K? + K?,). d2) 

By (8), 

g = [ ( l - f 2 ) / (2G 2 ) ] [ ( lc l 2 + Id^KK+lR^cdJ^a^)}. (13) 

To reduce this expression further, write A" as 

KmKt + iK2 = I K\e'iL~k (14) 

where by (6), L is the in-plane length quantity characterizing 
the specific interface crack problem when a = 0. The real 
angular quantity y will be used as the measure of the loading 
combination. Then by (11), (13), and (14), 

9 = < r 2 9 o l l c l 2 + \d\2+2Re(cde2ii)] (15) 

where 

q = {(l-p)/(\+a)Vn (16) 

and 

y = y + eln(a/L). (17) 

When e = 0, the stress intensity factors, A", and Kn, and Q 
are independent of a. This is the case for similar moduli across 
the interface (a = /3 = 0). By (4), e is also zero whenever /3 = 0 
regardless of the value of a. The oscillatory behavior of the in
terface crack fields and the a-dependence of 8 only appear 
when /3^0. A sensible approach to gaining insight into inter-
facial fracture behavior, while avoiding complications 
associated with the oscillatory singularity, would be to focus 
on material combinations with j3 = 0. Indeed, Hutchinson et 
al. (1987) tabulated strain values on a and j8 for six represen
tative material combinations and found that (3 was quite small 
for most of the combinations. For example, MgO has a shear 
modulus more than four times that of Au, yet this combina
tion has a = .51, 0 = .011, and e = - .004. In this paper, 
special attention is directed to material combinations with 
/3 = 0, but the role of /3 will also be examined. 

When /3^0 and, therefore, e^0 , the interface crack with 
a = 0 suffers contact between the crack faces within some 
distance (usually exceedingly small) from the tip, as discussed 
recently by Rice (1987) and Anderson (1987), and as analyzed 
by Comninou (1977). Contact between crack faces is less likely 
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Fig. 3 Geometry and conventions for construction of integral equation 

Z= X,+ i x „ = te 

for the kinked crack (a >0 , co>0) loaded such that K} and Kn 

are positive, since this will open up the crack at the kink. 
Nevertheless, contact will inevitably occur if e^O when a is 
sufficiently small compared to L. 

The dependence of g on a for a given kink angle is sketched 
qualitatively in Fig. 2 as predicted by (15) when e^O. When 
a/L becomes sufficiently small, g oscillates between a max
imum 9 c a n d a minimum g L , which are readily found to be 

Qu = q-2Q0Uc\ + \d\]2 (18) 

<3L=q-290Vc\-\d\]2 (19) 

and which depend on K{ and K2 only through Q0. For values 
of a/L outside the oscillatory range g approaches 8*, given by 
(15), with 7 = 7, i.e., 

g* =q~2G0[\c\2 + \d\2 + 2Re(cde2'y)]. (20) 

Note that g* coincides with g when e = 0. Contact between the 
crack faces will invalidate the prediction for g from (15) when 
a/L is in the range where oscillatory behavior occurs. 

In presenting results for the energy release rate when e T± 0, 
we will feature g*. From a physical standpoint, g* should be 
relevant if there exist crack-like flaws emanating from the in
terface whose lengths are greater than the zone of contact. 
That is, g* should be relevant for testing for kinking if the 
fracture process zone on the interface is large compared to the 
contact zone of the idealized elasticity solution. If it is not, 
then more attention must be paid to the ^-dependence of g 
and to consideration of contact. In any case, g* should play a 
prominent role in necessary conditions for a crack kinking out 
of an interface, because once nucleated, the kinked crack has 
an energy release rate which rapidly approaches g* as it 
lengthens. 

The final observation about the form of the solution con
cerns the behavior expected as co—0. When co becomes small, 
the kinked segment parallels the interface and the solution ap
proaches the solution obtained by Hutchinson et al. (1987) for 
a semi-infinite crack paralleling an interface a distance h 
below the interface. That solution has the property that g = g0 

and is given by 

Kl + iKll = qei*hkK (21) 

where 0 is a real function of a and /3 which is tabulated by 
Hutchinson et al. (1987) and which is given approximately by 
4> = .158a + .063/3 when a and /3 are small. In the present 
problem for small co, h can be identified with a sin co = aco and 
(21) becomes 

KY + iKu = 9e'<*+dnu)a /£. (22) 

Thus, by comparing (8) and (22), one sees that for smallco 
c-geW+dnu), rf_0> g - g 0 . (23) 

2 Integral Equation and Solution Methods 

The integral equation governing the solution to the kinked 
crack problem is constructed using a basic solution for an edge 

Fig. 4 Dependence of strength of singularity at kink, s, as a function of 
kink angle o> tor various «(/S = 0) 

dislocation in material 2 interacting with a semi-infinite 
traction-free crack extending along the interface to the origin, 
as shown in Fig. 3. The dislocation is located at z0 and its 
branch line extends parallel to the crack to Xj -» — °°. Its radial 
and circumferential components of the Burgers vector along d 
- - co are br and bg. The traction at z on d = - co can be writ
ten as 

aee(t) + iare(t)=2Be-i"(t—n)-
l+BH^t,r,)+BH2(t,v) (24) 

where 

B = [G2/(l - v2)]{br + ibg)e-iu/{4iri). (25) 

The functions H{ and H2 are specified in the Appendix. They 
are analytic at t = -q, increase in proportion to t~W2 as /—-0, 
and decrease in proportion to rj1/2 as r/ —0. 

Denote the traction at z along 6= -co due to the interface 
crack tip field (3) by a°m (t) + ia%(t). This traction, which is 
also given in the Appendix, can be written as 

a°ee(t) + ia%(t) = (Kh{ ( 0 +Kh2(t))r
l/2. (26) 

The functions h, and h2 depend on co and e as well as t. When 
e = 0, hx and h2 are independent of t. 

The segment of the crack corresponding to Q<t<a is 
represented by a distribution of dislocations B(-q) chosen such 
that the net tractions resulting from (24) and (26) are zero on 
this line segment. Since the a-dependence of the solution is 
already known from (8), a is taken to be unity. The integral 
equation is then 

2e-"»\ B(7,)(t~r,)~'dr,+ \ B{r,)Hi{t,r,)dti 
Jo Jo 

+ ^ B(r,)H2(t,r,)dri= - (<j°M(t) +io%(t)). (27) 

Similar formulations for other problems have been given by 
Bilby and Eshelby (1968), Rice (1968), and Hayashi and 
Nemat-Nasser (1968a,b). 

Singularity at t = l. The dislocation density representing 
the kinked segment is proportional to (l-t)~W2 as t—l and 
the stress intensity factors are given by 

Kx +iKu =(27r)3/2e-'Mlim {(l-t)l/2B(t)} (28) 

Singularity at t = 0. A weaker singularity exists at the kink. 
The most singular stresses in the vicinity of the origin have the 
form aap ~ r~sajj (6) where, in general, s is a complex number 
depending on co, a, and /3. Hein and Erdogan (1971) have 
derived the equation for s for the relevant bimaterial, wedge-
shaped region. When 13 = 0, the imaginary part of s, sl, is zero; 
the real part, sR, is shown as a function of co for several values 
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of a in Fig. 4. When /3^0, sx is still zero over most of the 
range of co except for co greater than about 3TT/4 in most cases; 
the real part depends on a> in much the same way as displayed 
in Fig. 4. Thus, for essentially all cases of interest here, $• is real 
and smaller than 1/2. 

So 
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Fig. 5 Variation of S'So with kink angle for loading combinations 
specified by 7 = t a n - 1 (K2/K1) for various values of a, all with /S = 0. 
The homogeneous case (a = 0 = 0) is in (c). 

Solution Method #1. This method builds in the correct 
singularity of the dislocation distribution at each end of the in
terval with 

B(n) =,-'(1 -r,)~i/2P(v) (29) 
where P(TJ) is bounded on 0 < J J < 1 . For an approximation 
with N unknown complex coefficients, C,-, P was represented 
by a polynomial of degree N— 1 as 

PW=TlCjnJ- (30) 
j=\ 

By substituting (29) and (30) in the integral equation (27) 
one obtains the equation 

N 

D {CjEj(t) + CjFj(t)) = - (o°geU) +h%U)) (31) 
y = i 

where the integral expressions for Ej and Fj are readily iden
tified. To determine the TV complex coefficients, (31) is 
satisfied at TV points on the interval 0 < t < 1; the set of Gauss-
Legendre points were used once the interval had been mapped 
to lr I < 1. Some of the integrals making up the Ej and Fj must 
be evaluated numerically at each of the points t. Unusual care 
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Table 1 (co = 45 deg) 

Method #1 Method #2 
a = 0 0=0 

N 
4 
8 
10 
12 
16 
20 
40 

^«(D 
0.05036 
0.05016 

0.05009 
0.05004 

PmU) 
0.02135 
0.02113 

0.02106 
0.02104 

PRQ) 
0.04820 
0.04981 
0.04988 
0.04992 
0.04996 
0.04998 
0.05001 

PmW 
0.02046 
0.02112 
0.02112 
0.02111 
0.02109 
0.02107 
0.02103 

N 

a = 0.56 

P R W ^»(D 

0 = 0.12 

PRW PmW 
4 0.04268 0.01934 0.04279 0.01838 
8 0.04207 0.01889 0.04216 0.01878 

12 0.04204 0.01888 0.04208 0.01883 
20 0.04204 0.01885 
40 0.04202 0.01886 

100 0.04201 0.01887 

must be taken that these numerical integrations are performed 
accurately. It is this part of the computation which consumes 
the bulk of the computational effort. The polynomial 
representation (30) is equivalent to an expansion in any set of 
polynomials of degree N— 1. The particular set (30) has cer
tain advantages in reducing the computational effort involved 
in the numerical integrations. 

Solution Method #2. This method is that used by Lo 
(1978) and Hayashi and Nemat-Nasser (1981a) which, in turn, 
follows the procedures developed by Erdogan and Gupta 
(1972). In our application of this method, s is taken to be 1/2 
in (29) and the condition P(0) = 0 is imposed. The recipes 
developed by Erdogan and Gupta and used by Lo can then be 
taken over directly even though the singularity at t = 0 is not 
strictly correct. At the M h level of approximation, this 
method generates a system of algebraic equations for values of 
P(ij) at TV Gauss-Chebychev points. The advantage of this 
method is that it requires far less numerical computation than 
Method #1 at the corresponding M h level of approximation. 

Table 1 compares results from the two methods for two ex
amples at various levels of approximation. By (28) and (29), 
the stress intensity factors are given by 

Kl + iKll = (2-w)3/2e-hPj\) (32) 

and Table 1 presents the real and imaginary parts of P(l). The 
convergence of Method #1 is clearly faster than that of #2. 
Nevertheless, at corresponding levels of accuracy, Method #2 
is still far more efficient than #1. The results presented in the 
following section were computed using Method #2 with 
Af=40. A number of test calculations indicated that the dif
ference in the values of P{\) computed with N=40 and 
N= 100 was less than .1 percent except at small values of co, as 
will be discussed later. 

3 Numerical Results 

Homogeneous Limit (a = /S = 0). The limiting case for 
crack kinking in a homogeneous material has been studied 
thoroughly in the literature, although considerable confusion 
has surrounded the problem because a number of early solu
tions were in error. Perhaps the most recent paper on the sub
ject is that by Hayashi and Nemat-Nasser (1981a) which pro
vides access to the literature. The results of Bilby, Cardew, 
and Howard (1977) derived using the method of Khrapkov 
(1971) and the results of Lo (1978) and Hayashi and Nemat-
Nasser (1981a) are generally accepted to be correct, and our 
numerical results for this limit reproduced their results within 
the accuracy which could be inferred from their graphs and 
tables. All information can be derived from c(co) and d(u>) in 

(8)-(10), and these coefficients are available in tabulated form 
in a limited-circulation companion report (He and Hutchin
son, 1988). Our results agree within 1 percent with the 
equivalent set of tabulated coefficients included in the paper 
by Hayashi and Nemat-Nasser (1981a). 

Plots of g/So versus co derived using (15) with the values of 
c and d are shown in Fig. 5(c) for a number of loading com
binations as measured by y = tan~'(AT2/A

r
1). Since the crack 

has been taken to kink downward, the loading combinations 
which result in AT, > 0 (i.e., an opening at the tip) and an open
ing at the kink will generally require K{ > 0 and 7 > 0 . Results 
for the maximum energy release rate and its associated direc
tion, together with the direction in which Ku = 0, will be 
presented later. 

The approximation of Cotterell (1965), Vitek (1977), and 
Lawn and Wilshaw (1975) gives in the present notation 

c = (e-iW2 + e~i3a/2), d = (e-/o./2_ei3U/2y (33) 
2 4 

Cotterell and Rice (1980) have shown that this approximation 
is asymptotically correct for small co and is reasonably ac
curate for predicting Kl and Kn for co as large as 45 deg or 
even 90 deg, depending on 7. 

Bimaterial Problem With /S = 0. As discussed in Section 1, 
cases with (3 = 0 and a ?* 0 afford insight into interface prob
lems without the added complication of oscillations, or con
tact, associated with nonzero e. Roughly speaking, a > 0 im
plies that material 1 is stiffer than material 2, and conversely. 
In the present paper the crack is always taken to kink 
downward into material 2 so that the relevant range of loading 
is restricted to K{ > 0 and Y > 0 as mentioned earlier. 

Values of c(co) and d(o>) have been tabulated for various 
values of a and are available in He and Hutchinson (1988). 
Plots of 9/80 versus w for various 7 are shown in Fig. 5 for a 
= .75, .5, 0, - .5, and - .75. As noted in (23), Q — Q0 as co-*0, 
and the numerical results for c and d were indeed in agreement 
with (23) for small a;. As long as a is positive the numerical 
method is accurate for co as small as 1 deg. For negative values 
of a the numerical method became increasingly inaccurate as 
co was decreased and results for co less than about 5 deg could 
not be obtained accurately for the cases a = - .5 and - .75. 
Thus, for co < 5 deg the curves in Fig. 5{d, e) have been inter
polated to the limit 8 = 80 f ° r " = 0, and these sections of the 
curves have been dashed. 

The qualitative features which emerge from the directional 
dependence of the energy release rate in Fig. 5 are the follow
ing: The more compliant is the material into which the crack 
kinks (i.e., the larger is a), the larger is the energy release rate, 
all other factors being equal. Conversely, if the lower material 
into which the crack kinks is relatively stiff er (a<0) , then the 
energy release rate is reduced. These features are consistent 
with the role of moduli differences across an interface when a 
crack approaches the interface from within one of the two 
materials. When the differences are relatively large, the energy 
release rate for a crack kinking into the stiff material can be 
less than the interface release rate S0 for all combinations of 
loading, as can be seen in Fig. 5(e) for a = - .75. This sug
gests that under conditions when the compliant material is 
tough and the stiff material and the interface are each relative
ly brittle with comparable toughnesses (as measured by a 
critical value of energy release rate), the crack will tend to be 
trapped in the interface for all loading combinations. If the 
stiff material is even less tough than the interface, the crack 
may leave the interface but not necessarily by kinking. For ex
ample, when a = - .75 in Fig. 5(e), the largest energy release 
rates occur when co is small approaching zero, suggesting that 
the crack may smoothly curve out of the interface. Such a 
path, however, would not necessarily satisfy Kn = 0. Some 
further discussion of these issues is given in the last section. 
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The direction co corresponding to the maximum energy 
release rate (i.e., where dQ/dco = 0 or at co = 0, whichever 
gives the larger 8) is displayed as a function of the loading 
angle 7 for various a in Fig. 6. For positive a, when the crack 
enters the more compliant material, co increases smoothly as 7 
increases from 0 deg to 90 deg. Note that even when K2 = 0 
(i.e. , 7 = 0), the direction of maximum energy release rate is a 
finite angle into material 2 when a > 0 . For negative a there is 
a range of 7 in the vicinity of 7 = 0 for which the maximum 
occurs at co = 0. In addition, for sufficiently negative a the 
maximum of 8 also occurs at co = 0 when 7 is in the vicinity of 
90 deg, as can be seen in Fig. 5. For a, more negative than 
- .67, the maximum occurs at co = 0 for all 7. 

The direction co corresponding to Kn = 0 is sometimes sug
gested as an alternative to co as the kink direction. A com
parison between co and co is shown in Fig. 7 for a = 0 and ± .5. 
In the homogeneous case when a = 0, the difference between co 
and co is less than 1 deg for nearly all 7 except near 7 = ir/2 

where it becomes about 2 deg. (Apparently, a numerical com
parison between these two directions has not previously been 
reported for the homogeneous case.) The difference between 
the two directions is also very minor for a = ± .5. It would be 
virtually impossible to distinguish between these directions us
ing experimental observation of kinked cracks. For more 
negative values of a than - .5, the range of 7 in which 8max 

occurs at co = 0 becomes significant, while Kn = 0 at values 
of co near the local maximum of 8 (see Fig. 5(e)) which occurs 
for co between about 45 deg and 60 deg depending on 7. In this 
range of 7, co and co are significantly different. 

Bimaterial Problem With /3^0. Values of c(co) and d(w) 
have also been tabulated in He and Hutchinson (1988) for 
various pairs of a and /3. The calculated values are in accord 
with the limits for small co indicated in (23) although for values 
co less than some value between 1 deg and 5 deg, depending on 
a and /3, the computational procedure begins to become 
inaccurate. 

As discussed in connection with (15), 8 is not independent 
of a when e^0 , but 8 approaches 8* for all but very small a. 

(x) 

4 

& (3max) 

— - a) ( K n = 0 ) 

- - 0 . 5 

= 0.5 

Fig. 6 Kinking angle & corresponding to maximum energy release rate 
as a function of the loading combination y = tan ~ 1 {K2IK*), in each F i9- 7 Kinking angle associated with Kn = 0 , a, as a function of y corn-
case for /S = 0 pared with kinking angle associated with maximum energy release rate, 

is, in each case for /3 = 0 
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Plots of S*/So a s a function of co are shown in Fig. 8 for (a = 
.5, 0 = .25) and (a = - .5, /3 = - .25). Although the /3-values 
in these examples are quite large, the curves are quite similar 
to the curves in Fig. 5 with the same values of a and with /3 = 
0. Curves of o> associated with the maximum value of 9* are 
shown versus 7 in Fig. 9. The effect of (3 on this variable ap
pears to be relatively weak. 

Contour plots of maximum values of S*/8o a r e shown in 
Fig. 10 where a and 0 are coordinates whose range shown is 
restricted to non-negative values of the Poisson's ratios, v{ 
and v2. Each of the four plots is associated with a given 
loading combination measured by 7. The cross-hatched areas 
coincided with those pairs of a and /3 for which the maximum 
value of 8* is Q0 with Q> = 0. Note that 8^ax/80

 v a r i e s by 
roughly a factor of 2 for a ranging from 1 to - 1. These plots 
also reveal that the dependence of Smax o n P l s n o t particularly 
strong, especially in the range Ij8l < . l . 

The only other paper on cracks kinking out of a bimaterial 
interface appears to be that of Hayashi and Nemat-Nasser 

*» Q 

a* /'So=l° 

(dj x = 7 r / 1 0 , K 2 / K , = 0.51 

Fig. 10 Contour plots of the maximum value of 9*'§o a s a function of a 
and S for four loading combinations specified by y. The shaded regions 
correspond to (8*'8o)max = 1 w i , n "—0-

(1981b). These authors consider a very special crack geometry 
and account for crack surface contact. 

4 Concluding Remarks 

The results for the kinked crack can be used to assess 
whether an interface crack will propagate in the interface or 
whether it will kink out of the interface. The simplest ap-
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Fig. 11 For loading combinations y = tan_ 1 (K2 /Ki) satisfying 
0 < 7 S 7 m a x the crack will not kink out of the interface into material 2. 
Assuming a propagation criterion based on maximum energy release 
rate, the dependence of ymax on the ratio of material 2 toughness to in
terface toughness is shown for various a, all with 0 = 0. The insert figure 
shows the minimum value of this toughness ratio needed to ensure that 
the crack will not kink into material 2 for all loading combinations. 

proach is to assume that the condition for propagation in the 
interface is So = Soc a n d that for propagation in material 2 is 
g = Q2c. If Q2c is sufficiently large, compared to g0c, the crack 
will never kink into material 2. When g2c is comparable to Sue 
there will still be a loading range, i.e., 0<7<7 m a ! i , such that 
the crack stays in the interface, while for 7 > 7 m a x , the inter
face crack will kink into material 2. Figure 11 displays the 
dependence of ymax on S2c/Qoc f ° r various a-values, all with 
(3 = 0. When material 2 is the more compliant material g2c 

must be greater than the interface toughness 80c, by as much as 
2.5 (for a = .75) if the crack is to stay in the interface for all 7. 
On the other hand, when material 2 is relatively stiff (a = 
- .65), the crack will stay in the interface as long as 82c = Soc-
The plot in the insert in Fig. 11 gives the minimum value of the 
toughness ratio, (Q2C

/QQC)M> needed to ensure that the crack 
will not leave the interface and propagate in material 2 for all 
combinations of loading. 

A similar analysis can be carried out when Soc depends on 
7. This can be expected when the fractured interface has some 
roughness, with Q0c increasing with 7. Curves similar to those 
in Fig. 11 can be plotted from the basic results in Section 3. 
The important point is that the level of 82c required to prevent 
kinking out of the interface will depend on the interface 
toughness Q0c at the loading angle 7 applied. 

When there is no dissimilarity in the elastic properties of the 
materials across the interface, the directions of kinking 
associated with the maximum energy release rate and with Kn 

= 0 are virtually the same (cf. Fig. 7). This is also true when 
the crack kinks into the more compliant material (a>0) , at 
least when /3 = 0. However, when the crack kinks into a 
material 2 which is substantially stiffer than material 1, there 
exist ranges of loading where the maximum energy release rate 
occurs at small kink angles while the kink angle associated 
with Kn = 0 is around 45 deg or larger. When a < - .67 (with 
/3 = 0) the direction u associated with Kn = 0 is quite different 
from the direction of maximum energy release rate (&> = 0) for 
all loading combinations. It is an open question as to the 
criterion for crack kinking out of an interface when o> and <S 
differ considerably. When the crack has penetrated well into 
material 2 a criterion based on Kn = 0 is expected to hold. A 
choice of criterion for the initial kinking step will have to be 
guided by experiment. 

Pathological crack tip behavior associated with nonzero /3 
(i.e., nonzero e) has stood in the way of the development of an 
interfacial fracture mechanics for some years. This is in spite 
of the fact that there does not appear to be any compelling ex
perimental evidence that the unusual behavior associated with 
nonzero /3 is essential to interfacial fracture phenomena. As a 
way to break the impasse, a tentative proposal put forward in 
the body of the paper is that the role of j3 be downplayed by 
arbitrarily taking 13 = 0 in the use of analytical results to inter
pret tests and make predictions, especially when /3 is small 
anyway. Such an approach seems sensible where the primary 
fracture variables of interest depend weakly on /3, as is the case 
for most quantities examined in this paper. Obviously, a con
tinual monitoring for any possible essential role of /3 should go 
on if this proposal is adopted. 
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A P P E N D I X 

The basic solution for an edge dislocation at z0 (z0 = ve~'") 
in material 2 interacting with a semi-infinite, traction-free 
crack extending along the interface to the origin (Fig. 3) was 
obtained by using complex variable methods. If the traction 
on the radial line through z (z = te~la)is written as (24), the 
functions H^ and H2 are given by 

Hl(f,ri) = Hi0(t,il)+Hii{t,r,) 

H2(t,r,) = H20(t,v)+H2l(t,r,) (41) 

where 

H , o = - « ( 
1 

H 

and 

z-z0 

1 
Z-ZQ 

X 

, (Zo-ZQ) _ 

(Z-Zo)1 

(Zp-Z) \ 

iz-z0)
2) 

_, Uo-Zo) , _2/u (zo~z0)(z + z0-2z)\ 
(z-z0)

2 (z-Zo)3 

z-z0 

(AT) 

Hn=-(l+a)(l-f3)£ 
'F(z,Zo) , F(z,z0) 

1-/3 

H21 = - ( ! + « ) ( ! - j 8 ) . c [ - ^ 

1+13 

+ ^r^F(z,Z0)j. 
P dz0 

The functions Hl0 and H20 are for a dislocation below the 

bimaterial interface without the crack. The functions Hu and 
H2l are the additional terms to satisfy the traction-free condi
tion on the semi-infinite crack. In the above 

|S-c 
l+t 

X = 
a + P 

0-1 

and 

£(4>(z))=4>(z)+4>(z)+e-2i"\[(z-z)<t>'(z) 

, ( 1 - 0 ) 

0+0) *(«)-«(«) ] 
F(z,za) = — © / (Z -Z 0 ) -

The formula for o%,(t) + ia% (t)in (26) is 

o& + ia% = ^ ( z ) + 0^(z) +e~2inz<t>S(z) + x6(z)] 

where 

0o 'U)=-
1 

Xo(z)=-
1 

2V27T cosh 7re 

2V2TT cosh ire 

ee*Kz~ 1^2+'e 

1 

e-el^z-<1/2+ ' '£) 

• ( — -/e)fe-<1 / 2 + '£>l. 

(,43) 

(A4) 

(A5) 

(A6) 
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Maximal Crack Tip Shielding by 
Microcracking 
// is shown here that the shielding effect of a distribution of microcracks, i.e., the ex
tent to which they alleviate the severity of a near-tip singular field, is maximized 
when the microcracks develop normal to the direction of maximum tension. In pass
ing, we derive mode I asymptotic solutions for a class of anisotropic damage 
models. 

1 Introduction 

Stable microcracking in ceramic materials has the beneficial 
effect of partially relieving the stress concentrations that arise 
at the tip of a crack, in effect shielding it from the action of 
remote loads. Extensive microcracking of this type has been 
observed in certain classes of ceramics (Hoagland et al., 1973; 
Claussen, 1976; Wu et al., 1978). Microcracks develop mainly 
at grain boundary facets as a result of residual stresses 
generated during cooling and of applied tensile stresses (Fu, 
1983). Once the microcracks are formed they tend to remain 
confined to their facets with their tips pinned stably at grain 
junctures. As the number of microcrack nucleation sites is ex
hausted a saturation stage ensues during which the material 
sustains no further damage. 

Interest in the shielding mechanism stems from its potential 
for enhancing the fracture toughness of ceramic materials 
(Evans, 1984). The shielding effect may be quantified by 
means of the shielding ratio K^K^, where K, and K„ are the 
stress intensity factors of the near-tip singular fields and of the 
surrounding K-field. The value of Km is a function of the ap
plied loads and the geometry of the body. Thus, the shielding 
ratio provides a measure of the extent to which the remote 
loads are screened by the intervening effect of the 
microcracks. It bears emphasis, however, that the shielding 
ratio cannot be directly construed as giving the net toughness 
enhancement. In reality, the presence of microcracks ahead of 
the crack tip degrades the intrinsic resistance to fracture of the 
material, an effect which may partially or totally offset the 
toughness gains derived from shielding (Ortiz, 1988). 

In recent years, shielding phenomena have been the subject 
of several studies. Some authors have based their analyses on 
approximate solutions to many-crack problems (Gong and 
Horii, 1987; Hoagland and Embury, 1980; Kachanov, 1986). 
Others have relied on models of distributed damage 
(Charalambides and McMeeking, 1987; Hutchinson, 1987; 
Ortiz, 1987; Rodin, 1987). Among the latter, Charalambides 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED 

MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
Applied Mechanics Division, March 7, 1988; final revision, August 2, 1988. 

and McMeeking (1987) considered the case of isotropic 
damage and Ortiz (1987) the case of damage normal to the 
maximum tensile direction. Hutchinson (1987) based his 
analysis on both isotropic and anisotropic models of dilute 
microcracking. The available observational evidence 
(Hayhurst and Leckie, 1973; Leckie and Hayhurst, 1974) 
seems to support the notion that microcracks tend to develop 
normal to the direction of maximum tension. A comparison of 
the results of Ortiz and Charalambides and McMeeking, as 
well as the aforementioned work of Hutchinson, reveals that 
highly polarized microcracking provides a more effective 
shield than randomly-oriented isotropic damage. 

In this paper we show that microcracking normal to the 
maximum tensile direction, or normal microcracking for 
short, does indeed maximize shielding. More precisely, among 
all possible arrangements of a fixed density of microcracks, 
the largest shielding effect is attained for normal microcrack
ing. Our analysis relies on a model of damage to provide the 
necessary link between microcrack densities and the elastic 
moduli of the solid. In the interest of simplicity, we make the 
assumption that all points in the region of damage surround
ing the crack tip undergo ostensibly proportional stressing. 
Under these conditions, the effective material behavior may be 
idealized as that of a nonlinear elastic solid. Within this con
stitutive framework, the singular mode I fields can be obtain
ed in closed form for arbitrary microcrack orientations. Fur
thermore, the stress intensity factor at the crack tip may be 
related to the applied stress intensity factor by recourse to the 
/-integral of Rice (see, e.g., Rice, 1968). An analysis of the 
resulting shielding ratios shows that shielding is maximized 
when all microcracks are oriented at right angles to the max
imum tensile direction. 

2 Effective Constitutive Behavior 

We first concern ourselves with the problem of characteriz
ing the effective behavior of an elastic solid containing 
distributed microcracks. Of primary interest here is the 
anisotropy that results from the existence of preferred orienta
tions in microcrack distribution. To gain some insight into the 
structure of the constitutive response, we resort to a simple 
dilute model. For the applications we pursue here, it suffices 
to consider plane-strain states of deformation of the body and 
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planar distributions of damage for which all microcracks are 
contained in planes normal to the plane of the analysis. 

Let P((3) denote the fraction of microcracks subtending an 
angle /3 to the direction of maximum tension. Note the nor
malization condition 

i
ir/2 

P(/3)tf/3 = 
- i r / 2 

1 0) 

to be satisfied by P(/3). If we assume that the concentration of 
microcracks is low enough that their interactions may be 
neglected, it is then possible to express the complementary 
energy of the body as 

I r fi/2 1 
X(») = - y [CD*/ + C\ _rn ntnjnkn,Ptf)dp\o^, (2) 

where a,j are the components of the stress tensor, C$w are the 
elastic compliances of the uncracked solid, («,, «2) = (cos 0, 
sin (3) are the microcrack normals, and C is a coefficient, 
which depends on the density of microcracks and the elastic 
constants of the matrix material. In equation (2) and 
henceforth, Latin indeces take values {1,2). In arriving at ex
pression (2) it is assumed that the microcracks open primarily 
in mode I under the action of the resolved normal stress. The 
first term in (2) is simply the strain energy of the uncracked 
body, whereas the second term represents the strain energy in
troduced by the microcracks. A detailed derivation and discus
sion of (2) may be found in Kachanov (1980). 

Equation (2) is expressed with reference to a cartesian frame 
x, -x2 contained in the plane of the analysis. If, instead, we 
rephrase (2) in terms of the principal stress axes, we obtain the 
simpler form 

x(")= -ir- <?ijki<Jij<Ju+ -r- C^a^n (3) 

where the indeces a and (3 range over 
are the in-plane principal stresses and 

[1 ,2) , a! > 0 and <T2>0 

TT/2 

„ u - ^ , cos4 /3P (j3) dp 
I -Til -A 
( • T / 2 

C,, = C cos2 /3 sin2 0 P(0)dp = C2 
J - T / 2 

C22 = C\ sm\l3)P(i3)dp. 
J - x / 2 

(4) 

Some limiting cases of P are noteworthy. If, as assumed by 
Ortiz (1987), all microcracks are oriented normal to the direc
tion of maximum tension, one has 

PW = m (5) 
where 8 signifies Dirac's delta function. In this case, the coef
ficients (4) reduce to 

C[ i=C, C]2 = C21 = C22
 = 0. (6) 

If, by way of contrast, we assume all microcrack orientations 
to be equally probable, one has 

P(/3) = — (7) 

and 

: C 2 2 -
3C 

C l T — C9I — (8) 

In subsequent developments, we shall confine our attention 
to proportional and monotonic stress paths. Under these con
ditions, the ceramic materials under consideration here are 
thought to exhibit a saturation stage in their constitutive 
response which ensues as the available microcrack nucleation 
sites are exhausted (Fu, 1983). Throughout this paper, we shall 
adopt the complementary energy potential defined in (3) and 

ELASTIC 
REGION 

TRANSITION 
ZONE 

SATURATED 
ZONE 

Fig. 1 Geometry of semi-infinite crack problem 

(4) to describe the behavior of the material in the saturated 
range. The corresponding stress-strain relations follow as 

e<, = 3x(«0/3«ty (9) 
We note that the coefficient C bears a one-to-one relation to 
the microcrack density. Thus, keeping C constant while per
mitting P(j3) to vary arbitrarily yields all possible effective 
moduli attainable by a given microcrack density. 

It is always possible to write down a uniformly valid, com
plementary energy potential x(f) which reduces to xo a n d X as 
limiting cases. To this end, it suffices to let 

where 
x(ff) = XoO)+/(<?! ^2) 

Xo(<0= - 7 - Qjki°ijVki 

(10) 

(11) 

is the complementary energy potential of the undamaged 
material and/ i s any function satisfying the conditions 

9 2 / 

da„dfffl 

(0, 0) = 0, 

lim a2 / 
( f f i , <T2) = C, uP- (12) 

It will be assumed that one such complementary energy poten
tial describes the response of the material under proportional 
and monotonic stress paths. The first conditions in equation 
(12) requires that the tangent moduli in the initial stress free 
configuration coincide with those of the uncracked material, 
whereas the second of (12) implies the existence of a saturation 
stage governed by potential (3). Although, in actual computa
tions only the undamaged and saturated potentials will be ex
plicitly employed, the existence of a uniformly-valid potential 
needs to be postulated for the ./-integral formalism to apply. 

Finally, we note for later reference that the saturated com
plementary energy potential (3), although strongly nonlinear, 
is homogeneous of degree two. 

3 Asymptotic Fields for a Stationary Crack 

Consider a semi-infinite crack in a body subjected to plane-
strain mode I loading, Fig. 1. Assume that the conditions are 
met for the effect of microcracking to be describable within 
the framework of continuum damage models. Thus, all pro-
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cesses of interest are presumed to possess characteristic length 
scales much larger than the microcrack size and separation. 

With reference to Fig. 1, we identify three regions surround
ing the crack. In the innermost region, the material is as
sumed to have attained the saturation stage. By contrast , at 
sufficiently large distances from the crack tip, the material is 
presumed to be undamaged. These two regions are joined by a 
transition zone wherein the material, albeit damaged, is not as 
yet saturated. Within the region of saturation, we shall denote 
by a the angle subtended by the maximum tensile direction 
and the position vector measured from the crack tip. Further
more, the orientation of the microcracks may be character
ized by means of the angle /3 between the normal to the 
microcrack and the maximum tensile direction. 

The loads applied to the body are assumed to result in a 
remote K-field of the form 

Oij(r,d) = 
K„ 

•3°u(S) 

where K„ is the remote stress-intensity factor and r, 6 are 
polar coordinates centered at the crack tip with 0 measured 
from the plane of the crack. The familiar linear elastic angular 
fields ajj(d) are given by (see, e.g., Rice, 1968) 

5%(6) 

~(5/4)cos(0/2) - (l/4)cos(30/2) 

(3/4)cos(0/2) + (l/4)cos(30/2) 

(l/4)sin(0/2) + (l/4)sin(30/2) 

(14) 

The value of Kx depends upon the particular geometry of the 
body and provides a single-parameter characterization of the 
magnitude and distribution of the applied loads. 

For montonic loading, the stress paths at all material points 
may be reasonably expected to remain nearly proportional. 
Under these conditions, the inelastic behavior of the solid may 
be described by means of a deformation theory of damage, 
such as that formulated in Section 2. 

Since the adopted stress-strain relations derive from a com
plementary energy potential which is homogeneous of degree 
two, a classical argument (see, e.g., Rice, 1968) shows that the 
most singular term in the near-tip fields must be of the form 

°ij(r,B) = 
K, 

5y(8) (15) 

where K, is the near-tip, stress-intensity factor and the angular 
distributions 5,^(0) are to be determined. In general K, is dif
ferent from K„, owing to the shielding effect of the 
microcracks surrounding the crack tip. As mentioned in the 
introduction, the ratio K,/Km, or shielding ratio, may be 
taken as a measure of the extent of shielding. 

Ortiz (1987) has noted that for damage normal to the max
imum tensile direction, i .e. , for the case Cn=C, 
Cl2 = C21 = C22 = 0, the near-tip singular fields possess a struc
ture identical to that of the elastic solution (14). Here, we 
show that the elastic fields also happen to furnish the solution 
for arbitrary choices of the moduli Ca(3. In this way, we are 
able to characterize the near-tip mode I fields for material 
behavior ranging continuously from isotropic to normal 
microcracking. 

Start by noting that the stress field 

<r,y(0) = aP.(0) (16) 

satisfies equilibrium and traction-free boundary conditions on 
the crack faces. Thus, it suffices to show that the associated 
strain field is compatible. With reference to Fig. 1, the direc
tion of maximum tensile stress is computed to be 

e! =(cos a, sina), « : 
T T / 4 - 0 / 4 , O<0<TT; 

- T T / 4 - 0 / 4 , - T T < 0 < O ; 
(17) 

Thus, the angle a. subtended by the direction of maximum ten
sion and the position vector measured from the crack tip 
varies linearly with 0, from a value of a = 45 deg at 0 = O+ to 
a = 0 deg on the crack face 0 = -w. 

Let e2 = ( —sin a, cos a) be the remaining principal stress 
direction. Thus , (e , , e2) is the principal basis associated with 
the stress tensor. Then, the stress-strain relations in the 
saturated region take the form 

e,y = dx/doy = C°Uk,aki 

+ (Cneueij + Cl2e2iey)al (18) 

+ (C2leuelj + C22e2iey)(j2 

where the principal stresses aa may be expressed as 

K, 
°a(r,6)-- * « < « ) • 

(13) The angular fields aa are computed from (14) to be 

<Ti = cos + sin cos — 
2 2 2 

(19) 

(20) 

a2 = cos sin — cos — 
I 2 2 

Inserting (15) and (16) into (18), the asymptotic strain field 
is found to exhibit the additive structure 

(21) 

where the elastic strain field e? takes the familiar form 

re?r(r, 6)' 

efo(r,0) 

y%(r, 0). 

K, 
/2irr 2G0 

' (5/4 - 2^o)cos(0/2) - (1 /4)cos(30/2) 

(3/4 - 2yo)cos(0/2) + (l/4)cos(30/2) 

(l/2)sin(0/2) + (l/2)sin(30/2) 

(22) 

Here, E0, c0 , and G0=E0/2(l + v0) are the initial Young's 
modulus , Poisson 's ra t io , and shear modulus of the uncracked 
material. The term contributed by damage may be expressed 
in separable form, 

eg(r , 0 )= K,C 
W (23) 

where the angular fields e$ (0) read 

y% 

+ /*2ii 

^ 1 1 -

cf,cos a 

ofjsin2** 

2ff[Sin a cos a 

<T2COS2 a 

d2sm2a 

2of2 sin a cos a 

• + 

f +/M: 

(T,sinz a 

-2ajsin a cos a 

-V-ii 

CT2sinia 

cf2cos2a 

-252sin a cos a. 

O<0<ir. (24) 
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Here, the dimensionless coefficients /xoj3 are defined to be 

Hcp-C^IC. (25) 

The fields (24) may be extended by symmetry to the lower half 
of the plane. 

Next, we seek to ascertain whether the strain field (21) 
satisfies the compatibility equation 

r drdd 

dh 

dr2 
1 d2err 

r2 dd2 r dr 

1 dy^ 2 dee 

dd dr 
= 0. (26) 

Since the elastic fields are compatible, it suffices to consider 
the strains contributed by microcracking. For separable fields 
such as (23), the compatibility equation reduces to the condi
tion 

£(«•") = 
d2^ 1 dy% 1 
dO2 2 dd 2 

1 
z4. = 0 (27) 

for the angular fields. A lengthy but straightforward computa
tion yields the results 

£ 

£ 

ajCos'a 

cf,sin2a 

2ff[Sina cos a 

5,sin2a 

- 2<7i sin a cos a 

= £ 

ff2sin'a 

ff2cos2a 

— 2<j2sin a cos a 

= -£ 

a2cos ia 

cf2sin2a 

2(j2sin a cos a 

(28) 

Hence, in view of (28), we conclude that the strain field due to 
damage is compatible if and only if 

Cn = C2l. (29) 

For the model adopted here, the satisfaction of this condition 
is assured by the choice (4) of coefficients Ca&. 

The displacements may now be computed from the strain 
field, which yields 

4 Crack Tip Stress-Intensity Factor: Application of 
the /-Integral 

Next, we endeavor to compute the crack tip stress-intensity 
factor Kt as a function of the remote Km. Assuming that the 
stress histories experienced by all material points remain near
ly proportional and monotonic, the behavior of the material is 
indistinguishable from that of a nonlinear elastic body 
possessing a complementary energy potential of the form (10). 
Under these conditions, the sought relation between K, and 
Ka may be obtained by recourse to the ./-integral of Rice 
(Rice, 1968). 

Start by recalling that the contour integral 

J= \ [W(t)ml-oljmjUj\\ds (32) 

is path-independent under the assumptions stated above. 
Here, m signifies the outer normal to the contour V encircling 
the crack tip. If the contour is chosen to lie entirely within the 
remote field, /reduces to the well-known expression 

J =±^K2 
(33) 

For a contour shrunk down to the crack tip, the /-integral may 
be computed directly from the near-tip singular fields derived 
in the preceding section. A lengthy but straightforward 
calculation yields 

/ , = - * - - ^ K2 + (aC,, + bC21)K\ (34) 

where 

15-7T + 56 
a= =1.0942, b--

30TT 

15x-56 

30TT 
-0.0942. (36) 

Finally, the path independence of the /-integral requires 
that 

Jt •'oo 

where upon one concludes 

K, 
Ka 

= 1 N\ + {aCn+bC22)E0/(\-vl). 

(37) 

(38) 

In view of (4) it is seen that the shielding ratio Kt/K„ 
depends on the microcrack orientation density P(/3) through 
the coefficients C n and C22. Furthermore, the shielding ratio 
is a decreasing function of 

p jr/2 

6[P] = aCn+bCZ2 = C\ («cos4/3 + 6sin4/3)P()3)c?(3. (39) 
J i / 2 

ur(r,ff) 

ue(r,6) 

K, 

4G„ 
r 

2V 

( 2 K O - 1 ) C O S ( 0 / 2 ) - C O S ( 3 0 / 2 ) 1 , r 

\+K, 
- (2K0 + l)sin(0/2) + sin(30/2) J 2ir 

C n (1 + sin(0/2))2cos(0/2) + (C12 + C21)cos3(0/2) + c22(l - sin(0/2))2cos(0/2) 

- C„ (1 + sin(0/2))2sin(0/2) + (C12 + C2I)cos2(0/2)sin(0/2) - C22(l - sin(0/2))2sin(0/2) 

(30) 

where K0 = 3-4v 0 . The displacements in the lower half plane Thus, the distribution density P(/3) for which maximal 
follow by symmetry. Of particular interest is the crack open- shielding is attained follows as the solution of the linear op
ing profile timization problem 

[["illW = - u „ (r, IT)+«„( / - , - TT) Maximize 8[P] 

= Mt{—^ +Cn)^j—. (31) subjectto J _ ^ P ( 0 ) r f | 8 = l 

As may be seen, the coefficients C12 and C22 do not contribute where Cis regarded as a constant. It bears emphasis that, since 
to the opening displacement. C and the microcrack density are in one-to-one cor-
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respondence, the maximization implied in (40) is effected over 
all possible arrangements of a fixed population of 
microcracks. 

We next claim that the only solution to problem (40) is given 
by (5), which corresponds to the case in which all microcracks 
are oriented normal to the direction of maximum tension. To 
prove this assertion, note that 

3[8]/C = a. (41) 
On the other hand, the following holds: 

acos4|3 + 6s in 4 /3<a, /3 e [ - i r / 2 , i r / 2 ] . (42) 

From the inequality it follows that, for any distribution func
tion P(|S) > 0 satisfying the normalization condition (1), 

1
7r/2 

(a cos4/3 
•all 

(- TT/2 

+ bsm4(3)P(l3)dl3<a\ P(P)d$ = a (43) 
J - i r / 2 

i.e., the value of the functional 3[P]/C can be at most a. 
Hence, in view of (41), we conclude that P = 8 is indeed a max
imum. To see that this is the only solution to the problem, it 
suffices to note that, by virtue of inequality (42), any compo
nent of P whose domain lies in [ - 7r/2, TT/2] - (0 j necessarily 
reduces the value of 3[P]. Therefore, the domain of a max
imum of the functional must reduce to {0 j , which in conjunc
tion with (1) necessitates P = 8. Thus we have proved the main 
result of this section, namely, that normal microcracking max
imizes shielding. 
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A New Boundary Integral Equation 
Formulation for Elastodynamic and 
Elastostatio Crack Analysis 
An elastodynamic conservation integral, the Jk integral, is employed to derive 
boundary integral equations for crack configurations in a direct and natural way. 
These equations immediately have lower-order singularities than the ones obtained 
in the conventional manner by the use of the Betti-Rayleigh reciprocity relation. 
This is an important advantage for the development of numerical procedures for 
solving the BIE's, and for an accurate calculation of the strains and stresses at inter
nal points close to the crack faces. For curved cracks of arbitrary shape the BIE's 
presented here have simple forms, and they do not require integration by parts, as in 
the conventional formulation. For the dynamic case the unknown quantities are the 
crack opening displacements and their derivatives (dislocation densities), while for 
the static case only the dislocation densities appear in the formulation. For plane 
cracks the boundary integral equations reduce to the ones obtained by other 
investigators. 

1 Introduction 
Boundary integral equations, in conjunction with the 

boundary element method, provide an effective numerical 
technique for the solution of boundary value problems in solid 
mechanics. The boundary integral equation method (BIEM) 
has been successfully applied to a wide range of problems in 
linear and nonlinear elasticity. Recent developments of the 
boundary integral equation method have been concerned with 
applications to elastostatic and elastodynamic crack analysis. 
The method is attractive for crack analysis, because the semi-
analytical nature of the BIEM makes it easy to take into ac
count the singularities at the crack tips. 

The conventional BIE formulation, due to Rizzo (1967) and 
Cruse (1969), is based on the Betti-Rayleigh reciprocity 
theorem for two independent elastostatic or elastodynamic 
states. By choosing one of the states as the unknown field and 
the other as the basic singular solution (the Green's function), 
a representation integral for the displacement components can 
be derived. The integral, which is over the surface of the 
crack, contains the crack opening displacements (the displace
ment jumps across the crack faces) and derivatives of the 
Green's function in its integrand. Unfortunately, a direct 
limiting process on the representation integral for the 
displacements as the observation point approaches a crack 
face, gives rise to a degenerate set of BIE's, as shown by Cruse 
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(1975). This has motivated the use of representation integrals 
for the tractions, and their corresponding boundary integral 
equations, rather than displacement BIE's. Such traction 
BIE's are, however, highly singular, and they cannot be solved 
directly by numerical methods. To circumvent these dif
ficulties several approaches have been proposed, see for exam
ple, the papers by Cruse (1975, 1987), Weaver (1977), Budian-
sky and Rice (1979), Schmerr (1982), Sladek and Sladek 
(1984), Nishimura and Kobayashi (1987), Zhang and Achen
bach (1988), and Budreck and Achenbach (1988). Most of 
these studies first reduce the higher-order singularities to in-
tegrable ones, and then solve the modified BIE's numerically. 
The reduction is achieved by the use of partial integration. The 
required manipulations are reasonably easy for simple con
figurations such as three-dimensional planar or two-
dimensional straight cracks, but they become cumbersome for 
curved cracks. Furthermore, different forms of the regular
ized BIE's are obtained through the nonunique integration-by-
parts process, though they are equivalent (see Cruse, 1987). 

In this paper we present a new BIE formulation for crack 
analysis. The motivation for this study is the paper by Hu 
(1987), who proposed a novel way to obtain a new type of 
BIE, to solve elastostatic boundary value problems. Hu's for
mulation is based on the conservation integral Jk. In the pres
ent paper it is shown that Hu's BIE's are especially suited for 
solving crack problems. For elastodynamic problems, the Jk 
integral of elastostatics is generalized to time-harmonic 
elastodynamics, and the result is denoted by Jk. Boundary in
tegral equations are then derived from Jk in a direct and 
natural manner, for arbitrary crack configurations. The BIE's 
that are obtained are immediately less singular than the ones 
of the conventional formulation, and they do not require addi
tional manipulation in developing numerical solution pro
cedures. The BIE's presented in this paper have relatively sim-
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(a) 

x, 

( 5 ) 
^~ Xi 

Fig. 1 Curved crack of arbitrary shape; (a) x-, x3-plane, (b) top view 

pie forms, and they reduce to those for elastostatics by letting 
the circular frequency, w, approach zero, and by using the ap
propriate static Kelvin solutions. For planar and straight 
cracks the results agree with those obtained by other authors. 
New BIE's derived from the complementary conservation in
tegral Jk are also given, but these equations do not offer ad
vantages over the conventional formulation. 

The significance of Jk (or Jk) integral as a relevant crack-tip 
parameter in linear and nonlinear fracture mechanics has been 
well established (see Moran and Shih, 1987). The present 
paper presents a novel application of such path-independent 
or conservation integrals in elastodynamic and elastostatic 
crack analysis. 

2 Problem Statement and Conventional BIE 
Formulation 

A crack is a surface of displacement discontinuity when ex
ternal loads are applied to the body. The faces of a 
mathematical crack are infinitesimally close prior to loading, 
and they do not interact when loads are applied. This is an ac
ceptable approximation for real cracks whose faces are ini
tially sufficiently separated so that the faces will not touch 
when the body is disturbed. 

In this paper we consider a three-dimensional (curved) crack 
of arbitrary shape which is contained in an unbounded, 
homogenous, isotropic, linearly elastc solid. The geometry is 
shown in Fig. 1. The solid is subjected to time-harmonic mo
tion, but the term exp ( - ioit) has been suppressed throughout 
the analysis. 

The stress equations of motion are given by (see Achenbach, 
1973) 

,+pco2«,=0, (1) 

where a^ defines the stress components, u, denotes the 
displacement components, p is the mass density, and « is the 
angular frequency. In equation (1) body forces are not con
sidered and the summation convention is implied. In the linear 
theory, the strain components are defined as 

1 
-(Uij + Ujj). (2) 

The stress and strain components are related by Hooke's law 

(3) aij ~ Cijklekh 

where Cjjkl are elastic constants which for isotropic materials 
can be written as 

Cm = H A ' + v- (&ik&ji + &u&jk) • (4) 

Here, X and /x are Lame's elastic constants and <5,y is the 
Kronecker delta. The tractions vanish on the faces of the 
crack, i.e., 

fi = ounJ=0,xeA, (5) 

where A =A+ +A~ . For a scattering problem A+ is the in-
sonified side of the crack and A ~ is the shadow side. Also, rij 
is the unit normal vector of A. 

The total fields generated by the interaction of an incident 
wave with the crack can be written as 

«/,• = «/"+ «/*,<7(, = of + of, (6) 

where uj" and a'[j represent the incident field in the absence of 
the crack, and ufc, of define the scattered field. Both the total 
fields and the partial fields satisfy equations (l)-(3). For a 
given incident field the total field has to satisfy the boundary 
conditions on the faces of the crack, equation (5). 

Following the procedure proposed by Rizzo (1967) and 
Cruse (1969), a representation integral for the scattered 
displacement can be obtained by using the Betti-Rayleigh 
reciprocal theorem and the fundamental solution due to a unit 
time-harmonic point force. For a three-dimensional crack, the 
representation integral can be written as 

«F(x) = • L . < </*(x~ y)AUi(y)njdA(y), x£A-< (7) 

Here, x is the position vector of the observation point, 
c r^t(x _y) ' s the stress Green's function (Appendix A), and 
A«i(y) defines the displacement jumps (crack opening 
displacements) across the faces of the crack. 

As shown by Cruse (1975) for the static case, equation (7) 
will lead to a degenerate BIE formulation as x—A + . A natural 
remedy for this difficulty is to use the representation integral 
for the traction components, which can be obtained by 
substituting equation (7) into Hooke's law and by using 
fpc = <^pqnq • The result is 

J* (x) = - Cpqklnq (x) j ^ + a%j (x - y)A«, (y)njdA (y), x(A +. 

(8) 

Boundary integral equations can be derived from equation (8) 
by letting x—A+ and by applying the boundary conditions 
(5). The system of boundary integral equations that is ob
tained in this manner is, however, hypersingular when the 
observation point x and the source point y coincide, since the 
terms a ^ ^ x - y ) behave as (Appendix A) 

<ik/(x-y)~ 

1 
two-dimensional, 

a s /•—•(). (9) 
1 
-, three-dimensional, 

where r= Ix-yl. These higher-order singularities prevent a 
reliable direct numerical solution of equation (8). 

To overcome these difficulties Budiansky and Rice (1979) 
used partial integration to reduce the higher-order 
singularities, and to derive a system of BIE's for a flat crack in 
the plane x3 = 0 (see Fig. 1). Regularization procedures have 
also been proposed by Sladek and Sladek (1984), by 
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Nishimura and Kobayashi (1987), and by Budreck and Achen-
bach (1988). 

For a two-dimensional, crack configuration, analogous for
mulations have been proposed by Tan (1975), by Schmerr 
(1982), and by Zhang and Achenbach (1988). The corre
sponding elastostatic crack analysis using BIE methods has 
been presented by Cruse (1975) and Weaver (1977). A com
prehensive discussion and an extensive list of references have 
been given by Cruse (1987). 

All the studies mentioned previously have used partial in
tegration to reduce the higher-order singularities (9). This pro
cedure is easily implemented for flat or straight cracks, but it 
becomes quite cumbersome for curved cracks. In this paper, 
we will present a new BIE formulation which follows very 
naturally from a path-independent integral, and which has 
lower-order singularities than the ones obtained in the conven
tional BIE formulation. 

3 The Jk Integral and Related BIE's 

tics the Jk integral has the fo 

Jk = Js ( Wbjk ~aiJUi'k')nJdS' 

where S is the surface of a body with volume V, rij is the out
ward normal vector, and W is the elastic strain energy density 

In elastostatics the Jk integral has the form (Eshelby, 1951, 
Rice, 1968) 

(10) 

W= 
1 

(11) 

The integral Jk, which vanishes if there are no body forces and 
singularities present in V, is usually referred to as a path-
independent integral or a conservation law. The application of 
the Jx component as a relevant crack-tip parameter in linear 
and nonlinear fracture mechanics has been well established 
(see Moran and Shih, 1987). It can easily be shown that Jk = 0, 
by applying the divergence theorem, by using 

dW 

den 
(12) 

and by employing the equilibrium equations oyj = 0. The 
generalization of Jk to time-harmonic elastodynamics, which 
is denoted by Jk, can be written as 

= - ! . [(W+L)&jk-o„uUk\njdS, 

where L is the kinetic energy density 

L=-
1 1 

-pUjU, = • -poTM/M,-. 

(13) 

(14) 

Here also Jk = 0, under the same assumptions as for Jk. The 
proof is again very simple if we apply the divergence theorem, 
use equation (12) and employ the equations of motion (1). We 
note that Jk = 0 holds for any time-harmonic elastodynamic 
state which satisfies equations (l)-(3). 

Now let us consider two independent time-harmonic 
elastodynamic states for the same body: 

/ . ( i ) . (15) 

« l ) e y > uij 

These states satisfy the equations of motion (1), the strain-
displacement equation (2), and Hooke's law (3). By virtue of 
linear superposition, the sum of (15) and (16) 

w, M, -r ut , t y Cy -r c y , utJ utJ ^v,j , (17) 

also satisfies equations (l)-(3). Substitution of (17) into (13) 
yields 

n 

L-& 

Fig. 2 A scatterer in an unbounded solid 

Jk[uil = /*[«/»]+ /*[«P1 

+ \ s K « M - P« 2 «/«)«P)^ - u^af - afu^njdS. (18) 

Clearly, the terms Jk[ufl)] and Jk[uf2)] must vanish because 
w/1' and w/2) are two independent elastodynamic states. Since 
J/c [";] = 0 we therefore conclude that 

\sW^l-P^u^u^)bjk-u^of-o^l}njdS = Q. (19) 

Equation (19) is an extension of the two-state conservation in
tegrals proposed by Chen and Shield (1977) for elastostatics 
(to—0). The first state is now taken to be the unknown field 

(20) {«/«, of} = [uf, o f ] , 

while the second state is selected as the fundamental solution 
due to a unit point force 

u?\of} = {u%, o%}, (21) 
Q- are three-dimensional time-harmonic where ua

n and a^ 
elastodynamic Green's functions (see Appendix A), and at in
dicates the directions of the applied point force. Application 
of (19) to the surfaces S, Ss, and SR (Fig. 2), and use of the 
equations (20) and (21) results in 

[ Ilk(x;y)dS(y)+\ Ilk(x;y)dS(y) 
J S v Sfi 

}sR 
Ilk(x;y)dS(y) = 0, (22) 

where S is the surface of the scatterer, S6 is the surface of a 
sphere of radius 5, centered at x, and SR is the surface of a 
sphere with radius R, centered at x, as shown in Fig. 2. The 
surface S is assumed to be closed, regular, and smooth. The 
small sphere (radius 5) is selected to exclude the singularities in 
the Green's functions, and the sphere with radius R must be 
sufficiently large so that the scatterer S and the sphere Ss are 
included in it. The integrand Ilk in (22) is given by 

(16) 7, t(x;y)= {[«* i lI(y)«»G(l /(x-y)-p«2« /* (y)«g(x-y)]6 'jk 

- ufk(y)o% (x - y) - of (y)u% (x - y))«,-, (23) 

in which x represents the position vector of the observation 
point, and y represents the position vector of the source point, 
respectively. 

After elementary calculations the second integral in equa
tion (22) can be evaluated as 
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Ilk(x;y)dS(y) = -uf t (x) , as 5 - 0 . (24) 

By using the asymptotic expansions of the Green's functions 
for large ly I (Appendix B), the last integral in equation (22) 
can be rewritten in the following form 

(• ik, exp(ikjR) f 

x { [ < « , - / ( A + 2^LWf]« , i 

x n/H^expt - i'fcLn'x)dS(y) -

ikT exp(ikTR) 
inkTu-c) 

fi A-wR 

x(5il-ninl)nk}exp(-ikTn-x)dS(y). 

Applying the Cauchy-Schwartz inequality 

L/ («y> KL/s(y))1/2 (L IH2rfs(y)) 

(25) 

2V^?(Js |/(y)|2rfS(y)) 
1/2 

(26) 

and considering the following elastodynamic radiation condi
tions (see Tan, 1975; Achenbach, 1982), 

2 dS(y) = 0, (27) 

dS(y) = 0, (28) 

(29) 

V*' 

lim [ lo%nj-i(\ + 2n)kLunn, 
R — oo J SR 

lim i (jfy«y — iiikTufc) (5,v — «,-«/) 
#—oo J S# 

we obtain 

[ Ilk(x\y)dS{y) = 0, a s t f - ° ° . 
JSR 

Thus, equation (22) is reduced to 

ufk (x) = - j s {[«S>B(y)«fS»; (x - y) - P u 2 u f (y)«g(x- y)]5 

- « & ( y ) 4 / ( x - y ) - o f ( y ) « g 1 * ( x - y ) ) / i y - d S ( y ) > 

xgS. (30) 

Substitution of equation (30) into Hooke's law leads to the 
following representation integral for the traction components 
at x 

ft (x) = - Cpqlknq (x) J s {Wl„ (y)^,,,, ( x - y) 

-pco2«f(y)«<;(x-y)]5y , -

- " S ( y ) 4 / ( x - y ) - o f (y)"^(x-y)}nyc?S(y), x£S. (31) 

Equation (31) is a generalization of Hu's results for elasto-
statics (1987). 

Application of equation (31) to a three-dimensional crack 
yields 

/^ c(x)= -Cpqiknq(x)\A+ i[Aunu,(y)a%nl(x-y) 

-pa2Aw ;(y)z^(x-y)] .<V 

-Auhk(y)a%(x-y)}njdA{y),xiA + (32) 

Fig. 3 A curved crack in a two-dimensional geometry 

where A«,- are the crack opening displacements and Aw,- k are 
their derivatives with respect to yk. The last term of equation 
(31) disappears because of the continuity of a^nj across the 
crack faces. BIE's are obtained by letting x—A+ as 

fp (x) = Cpqlknq (x) j A + j [A«„,,„ (y)of„ „, (x - y) 

- pw1 Aw,- (y)w^ (x - y)] -5^ 

- Au,,k (y)a% (x - y))rijdA (y), xeA + . (33) 

The integral of (33) is understood in the sense of Cauchy prin
cipal values. No extra discontinuity terms enter (33) as x—A + . 
Equation (33) is valid for a three-dimensional crack of ar
bitrary shape. The corresponding BIE's for a two-dimensional 
crack in plane strain and antiplane strain can be derived 
directly from (33). For plane strain we obtain 

^" (x ) = Ca / jTe« (3(x)j r+ {[A«{ i l |(y)^„(x-y)-pW
2AH,(y). 

"i7(x - y)]5Xe - A«M>t (y)<4x7(x - y))nxds(y), xeT + , (34) 

while for antiplane strain we find 

fi"(x) = ^r+ ([A«3i„(y)o$a3(x-y) 

-pa)2Au3(y)^3(x-y)]5<jT 

-AuX0(y)<j^(x-y)}nyds(y),xer+. (35) 

Here T+ denotes the insonified side of the two-dimensional 
crack (see Fig. 3) and the superscript "g" represents the two-
dimensional Green's functions (Appendix A). All integrals of 
(34) and (35) are understood as Cauchy principal values. 

The BIE's (33) (as well as (34) and (35)) have the advantage 
over the conventional BIE formulation, i.e., equation (8), that 
no higher-order singularities appear. The unknown boundary 
quantities in the new formulation are the crack opening 
displacements and their derivatives, where the latter have the 
physical meanings of dislocation densities. We note also that 
the procedure in deriving (33) is very natural, and no elaborate 
manipulations, such as integration by parts, have been used. 
The BIE's stated here apply also to elastostatic crack analysis 
by letting to—0, and by using the corresponding elastostatic 
fundamental solution (Kelvin solution). For the static case, the 
term containing Aw,- disappears in the BIE's, and the only 
unknown quantities are the dislocation densities. The new for
mulation allows an immediate numerical implementation. 
When Aw,- has been computed, equation (7) can be employed 
to calculate the displacement field. 

As pointed out by Carlsson (1974), Bui (1977), and Moran 
and Shih (1987), there exists a complementary integral to Jk 

which is also path independent. For time-harmonic 
elastodynamics, the complementary integral may be stated as 

Ji= \ s [(Wc + Lc)djk-<riMui]njdS = 0, (36) 

where Wc and Lc are defined by the Legendre transformation 
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W = <jueu-W, (37) 

Lc = ptijiij—L. (38) 

The assumptions in deriving (36) are the same as for Jk. The 
proof of equation (36) can be performed directly by using the 
divergence theorem, by considering the relation 

and by employing equation (1). 
Following the same procedure as in deriving equation (31), a 

novel representation integral for the scattered traction com
ponents fpc(x) is obtained from (36) as 

fs; (x) = - CMiknq (x) j ^ (\u%,„ (y)af„„i (x - y) 

-pa) 2 Mf c (y)^(x-y)]5^ 

- ^ * ( y ) « S ( x - y ) - « / c ( y ) ^ / , * ( x - y ) } « y d S ( y ) , x$S. (40) 

Corresponding BIE's can be derived by applying equation (40) 
to the crack faces and by letting x — A, taking into account 
the boundary conditions (5). Such BIE's are, however, again 
highly singular due to the presence of the term a° ; , t (x-y) . 
Hence, equation (40) has no advantages over the conventional 
formulation given by equation (8). 

4 Examples 

In this section we will apply the BIE's (33) (as well as (34) 
and (35)), which are valid for arbitrary shaped cracks, to some 
simple cases. We first consider three-dimensional analysis for 
a flat crack in an unbounded body subjected to an incident 
time-harmonic wave. The crack is located in the plane x} = 0*. 
Hence, « , = « 2 = 0 , and n3 = l. The BIE's (33) separate into 
two decoupled equations: 

o& (Xl,x2,0)=\A+ {[(X + !»)<,% (x - y) 

-Xfff3a(x-y)]AM3]a(y)-

-po>2(\ + 2fi)u%(x-y)AUi(y)}dA(y),xeA + , (41) 

ofc(x„x2,0) = / t j ^ + l[o%t,{x-y) 

- t fStsfr -y^/s-ylAM^y)-

- Pu2u%(x-y)Aua{y)}dA{y),xeA + ,a£=\,2, (42) 

where CT3" and o'fc are stress components corresponding to the 
incident wave. We note that equation (41) is for the normal 
crack opening displacement Aw3, while equation (42) is for the 
transverse crack opening displacements Aua. Equations (41) 
and (42) have exactly the same forms as those derived by Bu-
diansky and Rice (1979), who used the conventional formula
tion in conjunction with partial integration. 

BIE's for three-dimensional analysis of a flat crack under 
static surface loading oii(xx, X2, 0) and a&3 (xx, x2, 0) can be 
obtained from (41) and (42) by letting co—0 and by employing 
the corresponding static fundamental solutions. The result is 

ff33(*,x2.0) = . , f , [ + -%-A«3 ia(y)A4(y), xe/l + ,(43) 
47r(l -J>) JA+ r2 

o^xxx2fi) = 87r (J*_y) \A+ -^-i(l-2v)[Saer,y-Sarr,p] 

+ 3r,ar,f)r,y}Auaiy (y)dA(y), xeA + . (44) 

Here r= Ix -y I, and v denotes Poisson's ratio. Equations (43) 

and (44) are identical to the equations stated by Weaver 
(1977). 

Next, we consider two-dimensional analysis for a straight 
crack for states of deformation in plane strain and antiplane 
strain. The crack is defined by x2 = 0*, IJCJ I <a . For the case 
of plane strain, the BIE's (34) become 

<7i2(*i>0) = M (Ki i (x -y) -a j r
1 2 2 (x -y) ]AH l i l 0 ' 1 ) -

- pa2ug
xx(x-y)Aux(yx))dyx, \xx\<a, (45) 

ofc(*i.0)= j ° f l ([(X + 2/*)o*„2(x-y)-Xa«221(x-y)]AM2il(y1)-

- pw2(\ + 2lj,)u
g
22(x-y)Au2(yx)}dyx, \xl\<a, (46) 

while for antiplane strain equation (35) takes the following 
form 

ff&(*i.0) = /tl l[0*3i3(x-y)AK3ilO'i) 
J — a 

- poi2u^3(x-y)Aui(y1)]dyl, 

l x , l<a . (47) 

The BIE's (45) and (46) have been derived by Tan (1975) via 
the conventional formulation. For plane-strain deformation, 
the BIE for the normal crack opening displacement, AM2 

(Mode I), decouples from the one for the transverse crack 
opening displacement, Aux (Mode II). For a two-dimensional 
crack under static loading an(x{,0), a22(xlt0), and <732(Xi,0), 
we obtain from (45) and (46) 

ix r ° Aw 
gi2(*i.0)= ,, , l-4—dyu\Xl\*a, (48) 

27T(1-J') J-a Xx —yx 

°n(xi,0)=- , f , [" A" 2 ' ' dyx, U,l<<7, (49) 
27r(l-»') J-o xx -yx 

for plane strain, and from (47) 

1 Pa Au 
M ^ , 0 ) = — 3-^dyx,\xx\<a, (50) 

2-jr J -a xx —yx 

for antiplane strain. Equations (48)-(49) are integral equations 
for dislocation densities, and they are again well known (see 
Mura, 1987). 

The BIE's presented here must, in general, be solved 
numerically. Special care must be taken in the numerical im
plementation to account for the local behavior of Au, and 
Au,j near the crack edges, and for the singularities of the 
Green's functions at x = y. For two-dimensional analysis of 
cracks subjected to static loading the method developed by Er-
dogan et al. (1973) has been frequently used, while Zhang and 
Achenbach (1988) solved the modified BIE's of (45) and (46) 
numerically for time-harmonic wave scattering problems. For 
three-dimensional analysis of a flat crack, numerical methods 
have been proposed by Polch et al. (1987) for the static case, 
and by Nishimura and Kobayashi (1987) for the dynamic case. 

5 Concluding Comments 

A novel application of an elastodynamic conservation in
tegral, the Jk integral, to elastodynamic and elastostatic crack 
analysis has been presented. Boundary integral equations 
follow from Jk in a direct and natural way. These equations 
immediately have lower-order singularities than the ones ob
tained in the conventional manner by the use of the Betti-
Rayleigh reciprocity integral. This is an important advantage 
for the development of a numerical procedure for solving the 
BIE's, and for an accurate calculation of the strains and 
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stresses at internal points close to the crack faces. For three-
dimensional or two-dimensional analysis of cracks of ar
bitrary shapes the BIE's presented here have simple forms, 
and they do not require integration by parts, as in the conven
tional formulation. In the dynamic case, the unknown quan
tities are the crack opening displacements and their derivatives 
(dislocation densities), while the static case only the disloca
tion densities appear in the formulation. Thus, higher-order 
shape functions for A«,- are desirable in the dynamic case. The 
complementary conservation integral Jc

k gives rise to more 
singular BIE's which offer no advantages over the conven
tional equations. 

The representation integral for the traction components, 
equation (32), can be used to derive BIE's for general 
boundary value problems (not necessary cracks) of time-
harmonic elastodynamic or elastostatics. The advantages and 
drawbacks of this approach compared to the conventional for
mulation have been discussed in the paper by Hu (1987). 

As pointed out by Hu (1987), new BIE's can be derived 
from other conservation integrals. Following essentially the 
same procedure as described in Section 3, the present authors 
have obtained another set of representation formulas for com
binations of u,(x) and utj (x) from the well-known M and Lk 

integrals (see Knowles and Sternberg (1972), Budiansky and 
Rice (1973)). The significance of these representation formulas 
and their associated BIE's for solving boundary value 
problems is under investigation. 
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A P P E N D I X A 

Green's Functions 

The Green's function for the three-dimensional elasto
dynamic state is given by (see Tan, 1975; Achenbach et al., 
1982) 

1 r exp(ikrr) exp(ikLr)~ 
«*(x-y)=-

where 

4irpw2 L r 

exp(ikTr) 

>(ikLr)-j 
r J ,ik 

Z—°ik> Airfxr 

r= Ix — yl 

041) 

042) 

The function w ^ ( x - y ) denotes the displacement in the i-
direction observed at position x due to a unit force in the k-
direction, applied at position y. The corresponding com
ponents of the stress tensor follow from Hooke's law 

(A3) nG = C 1JG 

u ijk *-'ijmn" mk,n' 
Similarly, the Green's functions for the two-dimensional plane 
strain and antiplane strain time-harmonic elastodynamic 
states are 

« i T (x -y ) = -L^-[[HmkTr)-H^(kLr)],a 

+ krKr 
ml)(kTr)], 

uUx-y) = —m\kTr), 

044) 

045) 

respectively, where H^(-) denotes the Hankel function of the 
first kind and zeroth order. Expressions for the stress com
ponents can be obtained by using 

^Vy = Cc^WfT.v for plane strain, 

Aa3 ~ MM33,a> for antiplain strain. 

(.46) 

(Al) 

The Kelvin solution for the three-dimensional elastostatics 
case may be written as 

u%(x-y) = -
1 

l0Tr/i(l - v)r 

while for two-dimensional elastostatics we have 

048) 
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«iv(x-y) = 
1 

8TT/*(1 - V) 
•[(3-4K)6aT/nr-r„r„]> (/19) 

r = I x - y l = lyl -y«x, (51) 

« g 33( x -y )= -
2-WJX 

•Inr, (A\0) 

for plane strain and antiplane strain, respectively. The cor
responding stress components for elastostatics follow from the 
equations (,43), (A6), and {Al). 

We note that both the dynamic and the static Green's func
tions possess the same singularities at r = 6, namely. 

uik 

°%~12 

1 
r 

1 

aijk,l 

>as r—0, 

for the three-dimensional case, and 

" l a . 

CT^T' 

"a/37,4 ' 

/«/• 

<>i,1 " 

' 3<*3,0 

as r—0, 

(-411) 

(-412) 

where y denotes the unit vector along y. By using (51), asymp
totic expressions for the three-dimensional elastodynamic 
Green's functions are obtained as 

* S ( * - y ) = ^ / ^ y ) ^ ^ r ^ x p ( - ^ y . x ) , (52) 

«£*= E / M W ( y ) e X f ^ ' , y l ) e x P ( - ^ y . x ) , (53) 

4 * ( x - y ) = E ' ^ C k ( y > e X P ( ^ ' y l ) exp(-ifc ty.x), (54) 

in which 

A<-,(y)=yiy,/(\ + 2ri, 

A^i(y) = (Si,-yiyl)/ii, 

Bf,k(y) = (Sii-yiyi)yk/ix, 

C-Jk(y) = [2K-2j?,.^ + (1 - 2 ^ ) 5 ^ 

Cf* (y) = 6,^- + Sjkyi - ly-Sjy^ 

(55) 

(56) 

(57) 

(58) 

(59) 

(510) 

(511) 

for two-dimensional plane strain and antiplane strain. All 
derivatives in the Green's functions are understood to be with 
respect to y. 

A P P E N D I X B 

Asymptotic Expansions of the Elastodynamic Green's 
Functions 

For ly I : » Ix I, the following approximation holds 

Also, kL and kT are the wave numbers of longitudinal and 
transverse waves, respectively. 

For a large sphere of radius R (see Fig. 2), the following 
relations hold 

l y l - i ? , 

r,k=yk = nk, 

(512) 

(513) 

where nk is the components of the unit outward normal vector 
of the sphere. Substitution of equations (52)-(513) into 
equations (22) and (23) yields equation (25). 
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A Tension Crack Impinging Upon 
Frictionai interfaces 
A crack impinging normally upon a frictionai interface is studied theoretically. We 
employ a solution technique which superposes the solution of a crack in a perfectly-
bonded elastic medium with a continuous distribution of dislocations which repre
sent slippage at the frictionai interface. This procedure reduces the problem to a 
singular integral equation which is solved numerically. Specifically, we consider the 
problem of an infinite sheet subjected to uniaxial tension containing a finite crack 
which lies normal to the tension axis and has both crack tips impinging normally on 
frictionai interfaces. The limiting problem of a semi-infinite crack impinging on a 
frictionai interface is considered as well. Posed as model problems for cracking in 
weakly bonded fiber composites, these studies reveal the effective blunting that can 
result when a weak interface serves to deflect a propagating crack. 

Introduction 

Fiber composites proposed for high-temperature applica
tions are generally made of constituents that are relatively brit
tle. Futhermore, these constituents are often weakly bonded, 
though this depends sensitively on the fiber preparation and 
the processing. It has been suggested by some workers 
(Phillips, 1974; Prewo and Brennan, 1980) that coupling be
tween fiber and matrix in poorly-bonded composites is by fric
tion or mechanical interlocking. While this lack of a strong 
bond is detrimental to some properties such as compressive 
strength and transverse tensile strength, it is believed to be a 
significant contributor to the composite's toughness and 
resistance to flaws propagating normal to the fiber direction. 

The following qualitative picture of the potential toughen
ing effect has emerged. Let a crack be propagating normal to 
the fibers while the composite is subjected to tensile loading 
parallel to the fibers. At any instant, a portion of the crack 
front will be at a fiber-matrix interface. A weak interface of
fers a degree of toughening if it can deflect the crack onto the 
interface, instead of permitting it to propagate forwards. The 
potential to deflect the crack is generally couched in terms of 
the energy to fracture the interface relative to the energy to 
fracture the fiber. 

In this paper we focus on composites in which the consti
tuents are coupled by a friction-like mechanism, and we offer 
an explanation of the deflection process which is framed in 
terms of stresses, instead of energies. To do this we pose and 
solve a simple model problem in which a crack impinges nor
mally upon a weak interface. The model problem shows that 
the frictionai interface acts to eliminate the singular stresses at 
the crack tip. Depending on the interface characteristics, the 
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effective blunting of the crack tip may be sufficient to entirely 
impede propagation of the crack. In particular, we consider a 
finite crack with both tips impinging on frictionai interfaces, 
which is subjected to remote tension normal to the crack. In 
the limit of a very low remote load, this problem is equivalent 
to the crack being semi-infinite, and this case will be handled 
explicitly. Since the friction stress is likely to depend on the 
normal stress, we model the interface as characterized by a 
pointwise Coulomb friction law. 

Finally, we mention that the problems studied here are also 
of interest in hydraulic fracturing. In that context, similar 
problems have been considered by Papadopoulous (1979), 
Keer (1981), and Lam and Cleary (1984), who correctly 
postulate blunting of the crack. The analytical treatment here 
goes beyond Lam and Cleary (1984) in a number of respects, 
including a careful treatment of the near-tip behavior, which 
explicitly reveals the nature of the blunting induced by fric
tionai slip. 

Problem Statement 

The problem we are contemplating is shown schematically 
in Fig. 1. An infinite strip occupying -2a<x<0 , is sand
wiched between two half planes, occupying x> 0 and x< -2a. 
The two half planes and the strip are homogeneous, isotropic, 
linear elastic solids, and all have identical moduli G and v. A 
remote compression axx = - aa acts to press the regions 
together, and the interfaces at x= -2a and x = 0 are capable 
of slip according to a Coulomb friction law. A finite crack lies 
along -2a<x<0,.y = 0 and a remote tension oyy =a0o is acting 
normal to the crack. We wish to analyze the distribution of 
stress, and the amount and extent of slip at the interface. Note 
that the problem has two planes of symmetry: parallel and 
normal to the crack plane. Although we solve this model 
problem with the aim of understanding the behavior of a crack 
in one constituent impinging upon a second constituent, we 
have ignored any differences in the constituent elastic moduli. 
This assumption substantially simplifies the analysis presented 
here. Nevertheless, it should be pointed out that the consti-
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Fig. 1 Schematic of finite crack impinging on frictionai interfaces 
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Fig. 2 Schematic of semi-infinite crack impinging on a frictionai 
interface 

tuent moduli of many composites intended for high 
temperature applications are not so different, at least as com
pared with resin-matrix composites. In addition, this allows us 
to focus on the effect of the interface. 

As mentioned in the Introduction, a pointwise Coulomb 
friction interface law is employed. According to this friction 
law, at any instant in the loading history, either sticking, slip
ping, or opening occurs at a generic point along the interface. 
Conditions for these three states along the interface at x = 0 
areas follows: 

stick condition 

o-<0,lTl</tlo-l,-^- = 0 ,J t=-?- = 0 dt "" dt 

slip condition 

o<0, \T\ =H \a\, sgn( ) =sgn(r), h 
V dt / 

open condition 

a = T = 0,h>0 

dh 

~dT 

(1«) 

= 0 (lb) 

(\c) 

with 

£ = lim \v(e,y)-v(-e,y) 

A = lim \u(e,y)-u(-e,y) . 

In these equations u and v denote the x- and .y-components of 

displacement, respectively, ix is the friction coefficient which is 
assumed to be constant along the interface, and d{ )/dt 
denotes the derivative with respect to a time-like parameter 
that increases monotonically as loading proceeds. The condi
tion sgn(dg/dt) = sgn(r) is the condition of positive energy 
dissipation which dictates that the instantaneous increment of 
slip be in the same direction as the shear stress. Note that we 
ignore the distinction between static and kinetic friction. 

The limiting case of a semi-infinite crack is shown 
schematically in Fig. 2. We refer to this problem as the "small-
scale slipping" problem, in analogy with elastic-plastic frac
ture mechanics, since it is an appropriate formulation of the 
problem when the slip length is small compared with the crack 
length. Again, a remote compressive stress axx= —<s0 is ap
plied pressing the half planes together. Remote from the crack 
tip, the Mode I elastic singular field is applied with stress in
tensity factor Kj. (The legitimacy of this remote field in the 
presence of the interface is justified next.) This means that the 
remote stresses are of the form 

K 
~fij(d)-<r0

snsj\ 

where r and 6 denote radial and angular coordinates centered 
at the crack tip, subscripts / and j denote Cartesian com
ponents, and fjj(Q) are the standard angular variations at a 
crack tip in a homogeneous, isotropic, linear elastic medium 
(see, for example, Rice (1968)). 

Near-Tip Analysis 

As will be seen below, there is a range of friction coeffi
cients for which the interface in the vicinity of the crack tip 
undergoes slip, but does not open. (It is important to note that 
we will refer to the interface opening (or not opening), as well 
as the crack opening. The "interface" refers to the lines 
x = -2a and x = 0; the "crack" refers to -2a<x<0,y = 0.) 
Thus, it is necessary to understand the effect of frictionai slip 
on the stress fields in the neighborhood of the crack tip. The 
asymptotic behavior of the stresses at the crack tip is one ex
ample of the general problem of a composite wedge, which has 
been studied extensively by a number of authors (see Dempsey 
and Sinclair (1981) for a review and a list of references). In this 
instance, we have wedges of identical materials, one contain
ing a crack, which share a frictionai interface (see Fig. 3(a)). 

We look for solutions to the biharmonic equation of two-
dimensional elasticity, which feature an Airy's stress function 
X of the form 

x = r2^p(0,\). 

The function x is related to the polar components of stress and 
displacement according to 

1 

<?*) = 

2Gur 

2Gu6 = 

where y = 4(1 -

dx 
dr 

1 

r2 

-

1 

r 

!<)in 

1 
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dx 
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dx 
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Slx 
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Fig. 3(a) Configuration for near-tip stress analysis 
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Fig. 3(b) Boundary conditions for near-tip stress analysis 

If we contemplate only fields which are symmetric about the x-
axis (Mode I), then only the range 0<8< -K need be considered 
(see Fig. 3(b)). The boundary conditions are 

<%("•) = ffrt(ir) = 0 

ff„(0) = «,(0) = 0 

and the interface condition is art = fxaM. (Note that a^ = — axy 

on 8 = 7r/2.) The result is the following equation (Dempsey and 
Sinclair, 1981) for the eigenvalue X (stress ~r~x) 

cosp[cosp(2sin2p-(l - X)2) -/*(2 - X)(l -X)sinp] = 0 

where p = (l-X)7r/2. This implies two sets of eigenvalues, 
namely 

X = 0,2,4,6,... 

which leave the interface traction-free, and X-(/= 1,2,3,...), 

cosp [ 2sin2p — (<rrt - X)2 ] 

where each Xy- satisfies 

/* = - (2-X) (l-X)sinp 
(2) 

Since the crack is opening in response to the load, we are 
looking for singular fields which satisfy ere>0 and am < 0 
along the interface, implying that /J. is negative. A search for 
solutions to equation (2) for various n<0 reveals all eigen
values X to be less than zero. Thus, there is no stress singular
ity in response to a remote tensile loading. On the other hand, 
for n>0, there can be eigenvalues greater than zero. This im
plies that remote compression tending to close the crack can 
give rise to singular stresses, provided the crack faces do not 
contact one another. Such a scenario may be relevant to the 
closing of the crack after opening and frictional slippage have 
occurred. We note that a similar effect was observed by 
Gdoutos and Theocaris (1975) and Comninou (1976) who 
studied the related problem of a wedge frictionally sliding on a 
half plane. They found that the existence of singular stresses 
was sensitively dependent on the direction in which the wedge 
slips. This discussion reveals the subtlety which underlies the 
assumption adopted without proof by Papadopoulos (1979) 
and Lam and Cleary (1984) that the crack is effectively 
blunted by the frictional slip. 

More insight into the behavior at the crack tip can be gained 
by considering the dominant eigenf unction, namely X = 0. This 

Rigid Motion 
a 

Rigid Motion 

1 
T 

^yyJtip 

Fig. 4 Stresses associated with dominant eigenfunction 

corresponds to piecewise constant stress fields in O<0<ir/2 
and 7r/2<8<ir. Since axy and oyy are zero on 6 = ir, they must 
be zero throughout TT/2<6<TT. Continuity of tractions im
plies that axy is also zero in 0<6<ir/2. Since the interface is 
assumed to be in a state of slip and axy is zero, o^ must be zero 
throughout O<0<ir . This leaves only ayy nonzero in 
O<0<ir/2. The fields are, thus, uniaxial tension (referred to 
as (pyy)t\p) parallel to the interface ahead of the crack 
(-7r/2<0<Tr/2), with the two blocks 7r/2<0<ir and 
- w<6< ~TT/2 moving rigidly up and down, respectively (see 
Fig. 4). 

The piecewise homogeneous stress state just discussed 
prevails right at the crack tip. It is a state, however, that could 
prevail whether or not there is contact at the interface in the 
vicinity of the crack tip. On the other hand, consider the eigen-
functions associated with the \j, implicitly given by equation 
(2). They yield stresses which behave as r—\j, where — X,>0; 
the tractions a^ and axy are nonzero and their ratio equals the 
value in, even as r~0. The point to emphasize is that it is 
theoretically possible for slipping contact to be maintained 
along the entire interface right up to the crack tip. Of course, 
opening of the interface at the crack tip is also a possible state; 
only an analysis of the complete problem—including far-field 
boundary conditions—will reveal whether contact or opening 
actually occurs. We contrast our conclusion with the tacit 
assumption of Papadopoulos (1979) and Lam and Cleary 
(1984) that opening at the interface ("lift-off" in their 
language) must occur. We return to this point below. 

Finally, before discussing the solution method, we verify the 
appropriateness of the far-field boundary condition for the 
case of the semi-infinite crack. Assuming the usual elastic 
singular field to be valid at r— oo, one can compute the ratio 

OVv 1 

4-s/irr- 1 

Note that the interface is in a state of stick if this ratio is less 
than ix., and if o„ < 0. If a portion of the interface is always in 
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a state of stick, then it is like it is perfectly bonded. Hence, 
provided oo>0, there is always some range of r including 
/•—oo which acts like it is perfectly bonded. This means that 
this "small-scale slipping problem" is legitimate if some non
zero residual compression exists at the interface (as simulated 
by a0). 

Method of Solution 

The solution method employed here is fashioned after the 
approach used previously by Dollar and Steif (1987) to study a 
pullout test with a Coulomb friction interface. We express the 
field quantities as a superposition of two solutions: (/) the 
elastic field associated with a crack in a single infinite, 
homogeneous sheet subjected to remote tension, plus (if) a 
distribution of edge dislocations which represent the slip that 
occurs at the interface. We will assume that contact is main
tained along the entire interface and that there are regions of 
slip near the crack tips. The validity of this assumption for a 
range of friction coefficients will be verified. 

Since the crack must remain free of tractions and since the 
field (i) satisfies this traction-free condition, the distributed 
dislocations must also leave the crack faces free of traction. 
This is readily achieved by letting the kernel dislocation solu
tion be that of an edge dislocation at the point (xa,y0) in the 
presence of a traction-free crack. Then, any distribution of 
such dislocations also leaves the crack free of tractions. A con
venient solution to this problem has been given by Lo (1978). 
The solution is readily expressed in terms of the Muskhelishvili 
complex stress potentials <j>(z) and \//(z), which are related to 
the stresses and displacements according to 

-axx + 2iaxy = 2(zV+^') 

(3a) 

(3b) 

(3c) 2G(u + iv) = K.4>-z4>' • 

where K = 7 — 1 = 3 -4v in plane strain. 
Lo's (1978) solution for a single dislocation at the point z0 

can be written as 

The functions 4>a and \p„ represent the solution for a disloca
tion in an infinite medium, and the functions <$>R and \pR repre
sent the solution associated with relieving the tractions induc
ed by 4>„ and ip„ on the crack faces. These functions are given 
by 

4>«,'(z,Z0) = a • 
1 

z~z„ 
^a,'(z,Z0) = a. 

1 

-Zo (z-z0) 

<I)R'(.Z,Z0)= - [uF(z,Z0) + aF(z,Zo) + a(z0-Z0)H(z,Z0)] 

i'R,(z,z0) = j>R' (z,z0) - <j>R' (z,z0) -z4>R" (Z,ZD) 

where 

X(z0) 

F(z,z0)--
, [ ' • X(z) 

•C A.Q 

H(z,z0)=-—F(z,z0) 
dZn 

and 

X(z) = ^Jz(z + 2a). 

The normalized Burger's vector, a, given by 

Gb„ 

has been specialized to the case of interest here in which only 
the ^-component of the Burger's vector, by, is nonzero. 
(Below, we will introduce a continuous distribution of disloca
tions; the derivative of by with respect to y—the dislocation 
density—will be denoted by b.) Note that </>„ and i/'™ have the 
usual dislocation singularity at z = z0 (and eventually con
stitute the singular part of the integral equation). The terms 
4>R and \pR have the characteristic square-root singularity at 
the crack tips since they represent the fields which relieve the 
traction on the crack faces. 

Symmetry of the problem dictates that there are symmetric 
(above and below the crack plane) slip zones along both inter
faces; that is b(0,yo) = b(0, ~y0) = - b(-2a, y0) = 
- b(-2a, -y„). Thus, the distribution of dislocations can be 
characterized by a single function b(y0) for yo>0. We now 
assume that there is a single region occupying 0<y<Ls which 
undergoes slip. Then an integral equation governing b(y0) is 
derived by enforcing the slip condition 

along 0 < ^ < L S . This leads to the singular integral equation 

] 0 Myo)[R0(yyo)-Rl{yjo)-VLR1(yja)\dyo+fly) = Q (4) 

where the functions Ra (the singular part), /? , , R2, a n d / a r e 
given in the Appendix. Since y = Ls represents the boundary 
between a slip zone and a stick zone, b(Ls) = 0 (see, for exam
ple, Dundurs and Comninou, 1979). The value of b(0), which 
we show below to be proportional to the finite tensile stress at 
the crack tip, is determined as part of the solution. 

The "small-scale slipping" problem is handled in an 
analogous manner. The solution of the traction-free, semi-
infinite crack in a single homogeneous medium (the elastic 
singular field) is superposed with dislocations along 
* = 0,0< \y\ <LS. In this case, the kernel dislocation solution 
is that of a dislocation in the presence of a traction-free, semi-
infinite crack. This solution (Lo, 1978) is of the same form as 
the first kernel solution; the only difference is that the limit of 
a~~<x> converts X(z) to (z)'/2. The corresponding expressions 
for the functions appearing in equation (4) are simpler; they 
are also given in the Appendix. 

A condition which can be used to determine the slip length is 
obtained by considering, once again, the near-tip stress field. 
As was previously shown, the stresses are not singular at the 
crack tip. However, our means of constructing the solution 
fails to account for this nonsingularity. We are superposing 
one field, that of a crack in a single homogeneous medium, 
which has a square-root singularity at the crack tip, with a 
second field associated with the dislocations, which is also 
square-root singular at the crack tip (through the terms <j>R and 
\j/R). This can only be reconciled by insisting that the total 
magnitude of the singular term vanish. The condition of zero 
net stress intensity factor can be expressed in the form 

4G 

-\ob^[-
2z0 + 3a 

- + -
2zn + 3a 

7T(K+1)JO —,"lX(z0)(z0 + 2a) X(z0)(z0 + 2a) 

for the finite crack, and in the form 

dy0-

6G CLs 

/TT(K+1) JO 

b(y0) 

^y0 

dy0=K, 

7T(K+1) 

for the semi-infinite crack. 
Our solution method serves to illuminate the difficulty with 

the tacit assumption of Papadopoulous (1979) and Lam and 
Cleary (1984) that the interface must open at the crack tip. (As 
will be shown, the interface will open if the friction coefficient 
is sufficiently high, which may be the case in the hydraulic 
fracturing problem.) Their assumption may have been 
motivated by the presence of the singular tensile stress axx 
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which is usually associated with a crack tip. It must be borne 
in mind, however, that each slip dislocation contributes a 
negative stress intensity at the crack tip. In rendering the net 
stress intensity factor zero, not only do the dislocations blunt 
the crack (making ayy nonsingular), they also make axx non-
singular. Hence, the interface is not forced to open; instead, it 
can be either open or closed, as seen next. 

For both crack problems, we normalize the stress com
ponents by a0. The spatial variables and the slip length are 
normalized differently, however. For the finite crack problem, 
they are normalized by the crack half length a; for the semi-
infinite crack problem, they are normalized by (K/a0)

2. The 
"small-scale slipping" problem may be solved once and for all 
(for a given ix) assuming the remote loading has a unit stress 
intensity factor. This derives from the fact that this problem 
has no inherent length scale, a feature it shares with the small-
scale yielding problem in elastic-plastic fracture mechanics 
(see Rice, 1968). The stress at the crack tip is independent of 
the load; the loading serves only to rescale the spatial coor
dinates. Hence, the residual stress <r0 acts roughly as a yield 
stress to limit the level of stresses at the concentrator. On the 
other hand, in the case of a finite crack it will be seen that the 
residual stress no longer limits the level of stress at the crack 
tip. 

A rather simple numerical discretization of the nondimen-
sionalized version of equation (4) was used. Once b(y0) is 
determined, essentially all other field quantities may be com
puted. One result of great interest may be determined directly 
from b(y0). Since b(y0) is equal to the jump in the strain eyy 

along the slip length, and since axx is continuous across the slip 
zone, b(y0) is proportional to the jump in ayy divided by 
£7(1->>2). Furthermore, since the stress ayy approaches 0 
behind the tip, one can express the tensile stress ahead of the 
crack tip as 

for plane strain. This result is, of course, consistent with that 
obtained from applying the Plemelj formulae. 

Results 

As mentioned previously, the small-scale slipping problem 
depends only on the friction coefficient n. Results for this 
limiting case are shown in Figs. 5 and 6, which depict the slip 
length and the tensile stress at the crack tip as functions of /u,. 
As might be expected, lower friction coefficients translate into 
easier slip and, thus, longer slip lengths. Likewise, since fric-
tional slippage at the interface relieves the stress singularity, 
lower friction coefficents lead to lower stress concentrations. 
A brief comment should be made regarding the vanishing of 
the tensile stress as \i approaches zero. Recall that the results 
shown in Figs. 5 and 6 presume that small-scale slipping condi
tions prevail; namely, that the slip length is short compared 
with the crack length. From Fig. 5, it can be seen that the slip 
length grows without bound as p, approaches zero. Hence, a 
vanishing friction coefficient makes no sense in the context of 
small scale slipping. As can be discerned from results to be 
presented, the stress at the tip is equal to the remotely applied 
stress for very small coefficents of friction. 

In practice, the stress at the tip in Fig. 6 was not computed 
via (7). Instead, ayy was computed at several different points 
near (but ahead of) the crack tip by an integration over the 
whole distribution b(y)\ the results were then extrapolating to 
the tip. The difference between this calculation and that based 
on (7) was approximately 4 percent. However, this difference 
is not representative of the accuracy of the solution as a whole. 
As mentioned above, the slip length, Ls, is adjusted until the 
net stress intensity factor is zero. Of course, this must be done 
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Fig. 5 Slip length as a function of friction coefficient for small-scale 
slipping problem 
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Fig. 6 Crack-tip stress as a function of friction coefficient for small-
scale slipping problem 

numerically. It was found that varying Ls a slight amount had 
a correspondingly slight influence on all field quantities, ex
cept on b(0), which depended sensitively on Ls. On the other 
hand, ayy, as computed from the whole distribution b(y), was 
relatively insensitive to small variations in Ls. To assess the 
correctness of the assumption that there is no opening of the 
interface one must verify that the resulting normal stress at the 
interface is compressive (<JXX<0). This was, in fact, found to 
be the case for the semi-infinite crack provided /x was less than 
roughly 0.3. For larger values of n, a small region near the 
crack tip was found in which axx>0; hence, such results are 
not shown. It was also verified that slip would not occur other 
than on the slip zones immediately adjacent to the crack tip. 

Next, we turn to the results for the finite crack. Figure 7 
shows the normalized slip length as a function of the dimen-
sionless loading parameter o„/o0. The slip length increases 
with the load and decreases with the friction coefficient (x. 
(Results for /x = 0.4 are not given for a„/a0 near zero, since 
opening of the interface occurs near the crack tip for very 
small remote loads.) For comparison, we show the slip length 
one would predict if the results for the semi-infinite crack were 
used, together with K, = a<x(ja)Vl (see Fig. 8). As expected, the 
results agree for small loads o^ /a0, since then the slip length is 
small compared with the crack length—the condition 
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Fig. 8 Comparison of slip lengths for finite crack with small-scale slip
ping approximation 

necessary to the small-scale slipping assumption. On the other 
hand, once the remote stess a„ becomes on the order of the 
residual stress a0, the slip length deviates from the small-scale 
slipping prediction. 

At this point it is useful to call attention to previous work by 
Dollar and Steif (1987), who studied a two-dimensional 
pullout test which features a Coulomb friction interface law 
identical to that considered here. They compared their results 
with the results one would obtain using a highly approximate 
style of analysis, which is quite common in the composites 
literature. Typically, these approximate analyses assume that a 
constant shear stress (the friction stress) prevails at the inter
face. To have a sensible comparison, Dollar and Steif (1987) 
equated the combination fia0, which is a nominal friction 
stress, with the interfacial shear stress of these approximate 
analyses. It was found that the slip length during the pullout 
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Fig. 7 Slip length as a function of remote load for finite crack 
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Fig. 9 Crack-tip stress as a function of remote load for finite crack 

test, as well as other quantities, depends on /* and a0 in
dividually and not just on their product. We attempted a 
similar comparison here by reconsidering Ls/a, now as a func
tion of the renormalized load a^/fxag. The curves (not 
presented) for different JX were found to be nearly coincident, 
once the slip length was on the order of the crack length. This 
implies that, at least insofar as the slip length is concerned, the 
dependence is essentially on the product \w0. (In the case of 
the semi-infinite crack, however, the slip length did not de
pend exclusively on the product /XCT0; that is Ls is not equal to 
(Kj/fj.a0)

2 times a constant which is independent of ix.) 
The normalized tensile stress at the crack tip is shown in Fig. 

9. Though the remote loading has been normalized by /xcr0, the 
resulting crack-tip stress still depends on p. (That is, the 
dependence is not purely on the nominal friction stress jia0, as 
it was for the slip length.) As can be surmised, the crack-tip 
stress increases as the remote load increases. Though results 
are only plotted for a limited range of a^/\x.aB, it was apparent 
from the numerical results that the stress at the crack tip ap
proached aa as <T„//i<70 — co. From this observation, there 
emerges the following interpretation of the effect of a fric-
tional interface on an impinging crack. For vanishing small 
remote loads (o^/fio,, < < 1), the crack acts almost as a crack 
in a single homogeneous medium; though the stress at the 
crack tip is finite (on the order of a0), the stress concentration 
(a^)tip/CT„ is unbounded. As the load increases, the interface 
"blunts" the crack more and more in the sense that the stress 
concentration diminishes. In the limit of an infinitely large 
load, the stress concentration has been eliminated: slip 
would have traversed the entire fiber length, and the half plane 
x>0 would be subjected to a uniaxial tension a^. As before, 
the curve for /* = 0.4 was not extended to values of the remote 
load at which the interface opened. In this regard, the follow
ing observation was made: the interface remains closed even 
for higher friction coefficients, provided the remote load is 
sufficiently high. 

Finally, we turn to the load carried by the "fiber" 
(-2a<x<0) as a function of distance from the crack. This 
transfer of load from the matrix back to the fiber is an impor
tant aspect of micromechanical models of composite proper
ties. Accordingly, we plot (in Fig. 10) the average stress uyy in 
the fiber (denoted by E), normalized by the remote stress a„, 
as a function of normalized distance y/a. This is shown for 
several values of the friction coefficient, but with the nor
malized load held fixed at alx/ixa0=2.5. For comparison, we 
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Fig. 10 Load transfer to fiber ( perfect bonding;—-constant shear-
stress approximation 
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Fig. 11 Interracial shear near crack tip 

exhibit (dotted curve) the load transfer associated with a fiber 
and matrix that are perfectly bonded (the crack in a single 
homogeneous medium), as well as the highly approximate 
result which assumes that the shear stress at the interface is 
constant and equal to \xa0 (dashed curve). Clearly, the load in 
the fiber is not so different from that predicted on the basis of 
the constant shear stress assumption. 

Some understanding of this can be gained from considering 
the distribution of interfacial traction axy (see Fig. 11). As was 
found from the near-tip analysis, the tractions at the interface 
are zero at the crack tip. However, these tractions increase 
rapidly with distance from the crack tip. For example, the 
shear stress quickly increases (in magnitude) to exceed ixa0 and 
eventually returns to zero. This was reflected in the load 
transfer curves. Generally, the actual fiber load exceeds that 
of the constant shear stress approximation, except very near 
the crack tip (this is difficult to detect from Fig. 10). Hence, 
while the rapidly varying stress fields usually associated with a 
crack play a role in the stress concentration at the blunted 
crack tip, they do not serve to significantly alter the rate of 
load transfer back to the fiber. 
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A P P E N D I X 
Herein, we give expressions for the terms appearing in the 

dimensional version of the integral equation (4). For the finite 
crack 

R0(y>yo)= 
-2 

y-y0 

R1(y,y0) = 2Im[h2]+Im\-
h\ + h] h\ + h\-

/ ? 3 hA 

+ 2yRe[G'(z,z0) + G'(.z,z0) 

-G'(z,-zQ-2)G'(z,-z0-2)] 

R2(y,y0)=-Re[-
• h'l + hj hi + h\ 

hi hn 

+ 2ylm IG' (z,z0) + G' (z,z0) 

-G'(z,-z0-2)-G'(z,-z0-2)] 

-2RelG(z,z0) + G(z,z0) 

-G(z,-z 0-2)-Gfe,-z"o-2)] 

where 
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* 2 = -
1 

Z Zn Z + Zo + 2 Z + Zn + 2 

G(Z,Zo) = + -
z-z0 2 ( z -z 0 ) 2 

Mz0) 
Xiz) 

1 . + . l ZQ-ZO 

z-z0 2 (z-Zof 

1 ZQ—ZO/ZO + 1 ( Zo + 1 \ ] 

\ rmoi2 /J 
and 

G ' = -

2 z-z0 \ [*(z0)p 

dz 

fly)=fi(y)-nfi(y) 

i . r z-2 
/iM=—2~/«[-

[*(X>]3 

For the semi-infinite crack 

- 2 
^oO.J'oH , 

Ri(y,y0) = 

(y+y0Y 

ly0[y2-3y2o+6yyo' 
L 2(y+v„)3 J 

20-^o) 3 

j> L 2(y+y0y 

f(y)=fliy)-iifi(y) 

- l 
/ ) (» = 

1 

•TV 

ERRATA 

Errata on "An Historical Note on Finite Rotations" by Hui Cheng and K. C. Gupta and published in the March 1989 issue 
of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 56, pp. 139-145: 

The second through fifth lines following equation (9) should read "angles, respectively. The aforementioned paper con
tains derivation details in Euler Angles, and related details can also be found in a 1770 paper in L. E. Opera Omnia-
Mathematica, Vol. 1 (6), pp. 287-315, 1921; but not in Euler (1775a) which was erroneously". . . 

On page 144, equation (52), replace the second occurrence of 0 ' by <£. 
Also on page 144, equation (CI), replace the first occurrence of H" by H' in the third line. 
On page 145 replace F" by F' in equation (C4b), G" by G' in equation (C5b), and t" by t' in the third line of equation 

(C15). 
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ERRATA 

Errata on "An Historical Note on Finite Rotations" by Hui Cheng and K. C. Gupta and published in the March 1989 issue 
of the ASME JOURNAL OF APPLIED MECHANICS, Vo1. 56, pp. 139-145: 

The second through fifth lines following equation (9) should read "angles, respectively. The aforementioned paper con- 
tains derivation details in Euler Angles, and related details can also be found in a 1770 paper in L. E. Opera Omnia- 
Mathernatica, Vol. 1 (6) ,  pp. 287-315, 1921; but not in Euler (1775a) which was erroneously". . . 

On page 144, equation (B2), replace the second occurrence of 4' by 4. 
Also on page 144, equation (Cl), replace the first occurrence of H" by H' in the third line. 
On page 145 replace F" by F' in equation (C4b), G" by G' in equation (C5b), and t" by t' in the third line of equation 

(C15). 
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1 The Problem 

When is a Moment Conservative? 
A simple, yet fully-general condition under which moment loading is conservative is 
presented. The condition is stated in terms of a Maxwell-type reciprocity relation 
between infinitesimal rotations and an appropriately defined differential of the mo
ment. The usefulness of this concept is illustrated by examples concerning torsional 
instability of shafts. 

The work of a force F on an infinitesimal displacement dr of 
its point of action with position vector r is 

dW=W-At, (1) 

a dot between vector or matrix symbols signifying a contracted 
product. 

Assuming that the force is determined by r, it is conservative 
whenever infinitesimal changes of F, d{¥, and d2¥, bear to the 
infinitesimal displacements that cause them, respectively, c?,r 
and d2r, the relation 

dlT-d2T = d2?'d1r. (2) 

A moment M acting on a body performs the work 

dW=M'8u, (3) 

where 8o> is an infinitesimal rotation of the body. However, a 
Maxwell reciprocity relation like equation (2) does not apply. 
In general, 

dlM-82o>7id2M'8io> 

if M represents a conservative loading. The reason for this 
discrepancy is that, as emphasized by the notation, while dr is 
a total differential, the rotation 801 is not. 

It is an intriguing question whether a differential operator 
d* can be defined such that 

d?M'52o> = d2*M-51o> (4) 

when M is conservative. As shown in the next section, such a 
differential does indeed exist. 

2 The Solution 

As a necessary prerequisite for a moment M to be conser
vative, its value must be given by the orientation of the body 
on which it acts. This orientation may be described by an 
ortho-normal matrix Q that transforms reference state direc-
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tions to their current values. If an infinitesimal rotation <5co is 
performed, away from the current state, then Q changes by 

dQ = 8uxQ. (5) 

The symbol x denotes a vector product. The vector product 
of 8o> and a matrix Q is defined by the identity 

(5wxQ).a = 5«x(Q«a) (6) 

to hold for arbitrary vectors a. 
Now, jntroduce through the Hodge duality skew matrices 

8Hi and M such that 

6tb«a = 6wxa, M«b = M x b , (7) 

identical in a and b. The work of M on 8o> may then be written 
as 

1 . 
M«5o)= — — M: 8u>. 

2 

The symbol " : " denotes a double contraction, so that A:B is 
the trace of A.B, the product of matrices A and B. From (5) 
and (7), observing that the inverse of Q is equal to its 
transpose Q r , 

5£> = dQ'QT. 

Hence, 

M«5co = Q r - M 
2 

:dQ. (8) 

With M given by Q, this is a total differential whenever dif
ferentials d{ and d2 of matrices Q and [ - l / 2 Q r . M ] are 
related through the Maxwell-type reciprocity relation 

dl[-~QT'M]:d2Q = d2[~-^-QT.M]:dlQ. 

Now, according to (5) and (7), 

di[—^-QT'M\:d2Q=[—^-Q^dlM 

+ —QT'8lS>-M~\:(82S>-Q) 

(9) 

<•[ -> •M :d2Q = —d,M:82(b + 
2 ' 2 h-"1 

M :6, 

which in view of (7) is further reducible to 
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-QT>M]:d2Q = cIlM'82o> — l5,a)M82wl, 
2 ~ — j - ^ - -•• --- 2 

where la b cl is the determinant with the columns indicated. 
Thus, conservative loading implies, and is implied by, 

cr,M»62u IS,wM52«l =d2M'5lw—— \62uM5iu\, (10) 

and this has the required form (4) if we set 

1 
d*M = dM- -StoxM. (11) 

The differential d*M is related to the Jaumann differential 

£>M = tfM-5coXM, (12) 

but unlike this, d*M is influenced by rotations of the reference 
frame, hence, nonobjective. 

3 An Example: Moments of Constant Forces 

Modeling a moment through conservative, e.g, constant, 
forces acting on rigid members serves well to illustrate the 
significance of the rotational term in (11). Referring the mo
ment to the origo of the reference system, a number of forces 
F,-. /'= 1, 2, . . . , acting at points with position vectors r,-, pro
duce a moment 

M=X>,-XF,, 

Assuming that the forces are constant, 

dM=J^drix¥i 

(13) 

(14) 

represents an infinitesimal change of the moment. Let the r, be 
rigid arms that are further rigidly attached to the body on 
which the forces act, so 

tfr,=5<oXr,, (15) 

where 8o> is the infinitesimal rotation of the body. Hence, 

dM=^(5uXTi)x¥i, 
i 

and this may be rewritten as 

tfM=£[r,(x)F,.-(r,..F,.)l].5co (16) 

4 Torsional Stability of Beams 

Following early investigations by Greenhill (1883), Ziegler 
(1952) emphasized the importance of specifying in stability 
problems for beams under torsion the rules according to which 
the torsional moment introduces infinitesimal bending 
moments as the beam deflects infinitesimally (see also Ziegler 
(1968)). In particular it has been pointed out that, unlike a 
constant force, a constant moment does not possess a poten
tial and, hence, is nonconservative. This is apparent also from 
equation (10) withe?, M = c?2M = 0: The two determinants ap
pearing in the expression are numerically equal but of opposite 
signs. 

Ziegler solves a number of stability problems including 
problems of beams subject to conservative, as well as non-
conservative, torsional loading. As to the former, he derives 
rules for the change with deflections of bending moments on 
the basis of simple mechanical models. These imply that the 
torsional moment is introduced via forces acting on rigid 
members attached to the beam in various fashions, as describ
ed in the previous section. 

For a brief and incomplete survey of the problems, consider 
an elastic beam with isotropic cross-section. Let a be its bend
ing rigidity. In a fixed Cartesian frame, the beam extends 
along the z-axis from z = 0, where it is clamped, to z = /, which 
is a free (i.e, unconstrained) end. This is loaded by a torsional 
moment M. 

For small deflections from the straight configuration, the 
governing equations may be expressed in terms of rotations 
(8t>)x, 8o)y) as 

a8w'x(z) +M8o3y(z) = dMx(l), 

a8o>'y(z) —M8o>x(z) =dMy(l). 
(21) 

A prime denotes differention with respect to z. The solution, 
respecting the boundary conditions 8oix(0) = 8oiy(0) = 0, is 

1 T Mz / Mz\ 1 
8wx(z) = —r \dMx(l)sm dMM)(\-cos 

M L a \ a / J 

8bly (Z) ^K(/)( Mz\ . Mzl 
—-11 4-rfM m s i n . 

(22) 

1 - cos^^1) + dMv (/) sin 
a / a 

We stipulate 

rd*Mx(l) 

d*My(l) 
= M 

8<*y ( I ) . 
(23) 

where "(x)" denotes a dyadic product, and 1 is the unit 
matrix. Clearly, the matrix relating vector dM. to vector Su> is 
nonsymmetric. However, 

5 w x M = ^ 5 w x ( r / x F / ) , 

or 

5w x M = ] £ ( r ; ®F ; -F,-(x)r,>5w. 

So, according to (11), 

d*M = K-8u, 

(17) 

(18) 

With (11) 

dMx(l) 

dMy(l) 
--M 

.kyx-H 

K^y ~T / 2 f8o>x(l) 

toy(l) 

The loading is conservative if, as we assume, 

k — lr 

(24) 

(25) 

This condition was established by Beck (1955). Introducing 
(24) in (22) with z = /, 

where 

K=5[4 - r '®F '+T"F '® r '" ( r ' * F ' ) 1 ] - (19) 

This is a symmetric matrix, 

K r = K, (20) 

and so the reciprocity relation (4) is satisfied. 

1 

\ + t2 

-kxyt
2+kXXt-Vl -kyyt2+kXyt+l/lt 

. k*xt2 + k Xyt-Vlt kXy 

A 

'2 + kyyt-Vl _ 

(26) 
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Fig. 1 Torisional moment applied through four constant forces 

where 

t = tan-
Ml 

lc7 
(27) 

A nontrivial solution of (26) exists if the determinant of the 
system vanishes, 

1 1 
-4 Y(kxx + kyy)t+ (kx*k»y~k*y)tl = 0- (28) 

The roots are given by 

rk 
(20 -1 = 

*2J 
(29) 

so they are related to the principal values of matrix k in a sim
ple fashion. 

Ziegler has specifically considered the following cases, 
semitangential case, k{ = 0, kz = 0, 

quasitangential case, k, = —, k-, = 
2 2 

pseudotangential case, 0<kx <^~, kxk2 = . 

This is, of course, not a complete classification (neither was it 
intended to be). Koiter (1980) has investigated the case in 
which the torsional moment is applied via a Cardan joint 

(Hooke's joint) from a rigid shaft aligned with the flexible 
shaft. It turns out that this case is identical with Ziegler's 
quasi-tangential case. 

We finally present a force model consisting of four forces 
acting on rigid members in the x-y plane and covering the full 
range of eigenvalues k, and k2. The critical values of the tor
sional moment, M, and M2 may, for the boundary conditions 
here considered (one end clamped, the other free), be read off 
Fig. 1. Indeed, 

la 

M2l 

la 
(30) 

as is readily derived from equation (19) together with (27) and 
(29). 
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Cavity Formation at the Center of 
a Composite Incompressible 
Nonlinearly Elastic Sphere 
In this paper, the effect of material inhomogeneity on void formation and growth in 
incompressible nonlinearly elastic solids is examined. A bifurcation problem is con
sidered for a solid composite sphere composed of two arbitrary homogeneous 
isotropic incompressible elastic materials perfectly bonded across a spherical inter
face. Under a uniform radial tensile dead load, a branch of radially symmetric con
figurations involving a traction-free internal cavity centered at the origin bifurcates 
from the undeformed configuration. In contrast to the situation for a homogeneous 
neo-Hookean sphere, bifurcation here may occur either locally to the right or to the 
left. In the latter case, the cavity has finite radius on first appearance. This discon
tinuous change in stable equilibrium configurations is reminiscent of the snap-
through buckling phenomenon observed in certain structural mechanics problems. 
Explicit conditions determining the type of bifurcation are established for the 
general composite sphere. An analysis of the stress distribution is carried out and the 
effect of cavitation at the center on possible interface debonding is explored for the 
special case when the constituent materials are both neo-Hookean. It is shown that, 
in a quasi-static loading process, cavitation has the effect of preventing debonding at 
the interface. 

1 Introduction 

The phenomenon of void nucleation and growth in solids 
has long been of concern in view of its fundamental role in 
fracture and other failure mechanisms (see, e.g., Goods and 
Brown (1979) for a discussion of cavity nucleation in metals). 
Sudden void formation ("cavitation") in vulcanized rubber 
has also been observed experimentally by Gent and Lindley 
(1958). Nonlinear theories of solid mechanics have been used 
recently to account for such phenomena. The impetus for 
much of the recent theoretical developments has been supplied 
by the work of Ball (1982). Ball has studied a class of bifurca
tion problems for the equations of nonlinear elasticity which 
model the appearance of a cavity in the interior of an ap
parently solid homogeneous isotropic elastic body once a 
critical load has been attained. An alternative interpretation 
for such problems in terms of the growth of a pre-existing 
microvoid has been given by Horgan and Abeyaratne (1986). 
Further investigations of such bifurcation problems have been 
carried out by Stuart (1985), Podio-Guidugli et al. (1986), 
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Sivaloganathan (1986 a,b), Chung et al. (1987), and Antman 
and Negron-Marrero (1987). It is worth noting that cavitation 
can be shown to occur only when finite strain measures are 
taken into account. The corresponding problems in linearized 
elasticity or in the infinitesimal strain theory of plasticity do 
not exhibit such bifurcations. 

In a recent paper (Horgan and Pence, 1989) the authors 
have examined some aspects of the effect of material in
homogeneity on void formation and growth in incompressible 
nonlinearly elastic solids. A bifurcation problem is considered 
for a solid composite sphere composed of two neo-Hookean 
materials perfectly bonded across a spherical interface. Under 
a uniform radial tensile dead load, p0, a branch of, radially 
symmetric configurations involving a traction-free internal 
cavity bifurcates from the undeformed configuration. 
Although there is the possibility that nonradially symmetric 
deformations may occur, this is not addressed in Horgan and 
Pence (1989). Within the class of radially symmetric deforma
tions, it is shown that a configuration with an internal cavity is 
the only stable solution for sufficiently large loads. In contrast 
to the situation for a homogeneous neo-Hookean sphere, 
bifurcation may occur either locally to the right (supercritical) 
or to the left (subcritical). A detailed stability analysis based 
on energy minimization within the class of radially symmetric 
solutions was carried out. In the subcritical case, this analysis 
predicts that the cavity has finite radius on first appearance. 
This discontinuous change in stable equilibrium configura
tions is reminiscent of the snap-through buckling phenomenon 
observed in certain structural mechanics problems (see, e.g., 
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Budiansky, 1974), and was referred to by Horgan and Pence 
(1989) as "snap cavitation." Criteria for determination of the 
transition loads at which this occurs were developed and 
found to be sensitive to the precise notion of stability 
employed. A snap cavitation phenomenon has also been en
countered recently by Antman and Negron-Marrero (1987) in 
the study of radially symmetric equilibrium states of 
homogeneous anisotropic compressible nonlinearly elastic 
bodies. 

The purpose of the present paper is to provide further 
elaboration of these striking material instabilities in composite 
materials. Our main developments are twofold: We establish 
conditions which can lead to snap cavitation for tensile dead 
loading of composite spheres composed of two arbitrary 
homogeneous incompressible elastic materials perfectly 
bonded at a spherical interface. Secondly, an analysis of the 
stress distribution in such spheres is carried out and the effect 
of cavitation at the center on possible interface debonding is 
explored. The latter considerations are developed for the 
special case when the constituent materials are both neo-
Hookean. 

In Section 2, we formulate the basic boundary value 
problem that arises. One obtains, in addition to the trivial 
homogeneous state in which the sphere remains undeformed 
but stressed, other solutions for sufficiently large values of the 
applied dead loadp0, which involve an internal traction-free 
spherical cavity. In Section 3, the relationship between applied 
load and cavity radius is examined in detail. The critical load 
pcr at which bifurcation takes place is obtained (equation (16)) 
and is found to depend only on the material properties of the 
inner core. The notation pcr is reserved for the value of the ap
plied load at which an equilibrium solution path involving an 
internal cavity intersects the equilibrium solution path cor
responding to the undeformed configuration. It is important 
to note that this value of the load need not coincide with the 
load at which cavitation takes place. Continuous or smooth 
cavitation aXp0 =pcr can only occur when bifurcation is local
ly to the right. However, when bifurcation atp0 =pcr is locally 
to the left, a cavity of finite radius appears at a transition load 
p which may be less than/>„.. Characterization of p is discuss
ed in Section 3. We establish a criterion (see equation (23)) 
which differentiates between bifurcation to the right and to 
the left. This criterion depends only onpcr, the shear moduli 
for infinitesimal deformations of both materials, and the 
volume fractions of the two materials. It is shown that if the 
volume fraction of the core material is sufficiently large, then 
bifurcation is to the right irrespective of material properties. 
Bifurcation is also to the right if the material in the surroun
ding shell is stronger in infinitesimal shear than the core 
material. Bifurcation to the left occurs only if the core is suffi
ciently smaller than the shell and is composed of a material 
which is sufficiently strong in infinitesimal shear. In Section 4, 
an analysis of the stress distribution is carried out for the par
ticular case when the constituent materials are both neo-
Hookean. When the cavity is nucleated, in the case of smooth 
cavitation, it is shown that the predominant stress variation is 
confined to a narrow boundary layer near the cavity wall. 
Finally, the effect of cavitation at the center on possible inter
face debonding is considered. It is assumed that debonding oc
curs uniformly whenever the normal stress at the interface 
reaches a threshold value. It is then shown that, in a quasi-
static loading process, cavitation relieves the interfacial nor
mal stress so that subsequent interface debonding is 
precluded. 

It should be emphasized that our attention is confined to 
radially symmetric deformations. The possibility for bifurca
tions to nonradially symmetric configurations exists (see, e.g., 
the discussions in Needleman (1977) and in Ogden (1982, 
1984) concerning such bifurcations in the problem of inflation 

of an initially spherical balloon) but we shall not pursue this 
possibility here. 

2 Boundary Value Problem for a Composite 
Sphere: Formulation and Solution 

We are concerned in what follows with a sphere composed 
of an incompressible isotropic elastic material. Let D0 = {(r, 6, 
4>)\0-<r<b, O<0<27r, 0<</><7r] denote the interior of the 
sphere in its undeformed configuration. The sphere is sub
jected to a prescribed uniform radial tensile dead load of 
magnitude p0 on its boundary. The resulting deformation is a 
mapping which takes the point with spherical polar coor
dinates (/, 0, </>) to the point (R, 9, $) in the deformed region 
D. We assume that the deformation is radially symmetric so 
thatR=R(r)>0, 9 = 0, * = </> onZ>0, whereR(r) is to be deter
mined. Incompressibility then requires that 

;?(/•) = (r3+c3)1/3, (1) 
where c>0 is a constant to be determined. If it is found that 
c = 0, (1) implies that the body remains a solid sphere in the 
current configuration. On the other hand, if c is found to be 
positive, then .R(0) = c>0 and so there is a cavity of radius c 
centered at the origin in the current configuration. In this 
event, the cavity surface is assumed to be traction-free. 

We shall be concerned in what follows with the case of a 
composite sphere composed of two different homogeneous 
isotropic incompressible materials perfectly bonded across the 
interface r = a(<b). The strain-energy density per unit 
undeformed volume for such a material is denoted by \VQ\y, 
X2, X3;

 r)> where X,-(i'= 1, 2, 3) are the principal stretches. We 
use the notation 

W(KU X2, X3; r) = Wl (X,, X2, X3), 0<r<<Tl 
\ (2) 

W2 (Xj, X2, X3), a<r<bj 

where W 0=1 , 2) denotes the strain-energy density per unit 
undeformed volume of the respective phases. By virtue of 
isotropy, these expressions are invariant with respect to inter
change of the X,. 

The principal stretches associated with the radially sym
metric deformation at hand are \r = R(r), \e = \4,=R(r)/r, 
where the dot denotes differentiation with respect to r. Thus, 
in view of (1) we have 

\r = (R/ry\\e = \=R/r. (3) 
The principal components of the Cauchy stress tensor T 

yield force per unit deformed area and are given by 
dW 

Tu = X;— p, (no sum on i) (4) 

where p is the hydrostatic pressure associated with the incom
pressibility constraint X, X2 X3 = 1. For the radially symmetric 
deformation with principal stretches given by (3), these prin
cipal stress components are 

rRR(r) = v~2Wi(v~2, v, v; r)-p(r), 

Tm=Tii = vW1(v-2,v,v ;r)-p(r), (5) 
where we have used the notation (cf., Ball, 1982) 

c3 

v=v(r) = R/r=(l+—r-)
m. (6) 

r 
Notice that in (5) we consider r(r) rather than the more con
ventional T(R). Standard notation is used in (5) where the 
subscripts denote differentiation with respect to the ap
propriate argument. In (5) we have also used W2(v~2, v, v; 
r)=W-i(v~2, v, v; r) which follows from the invariance of W 
with respect to interchange of its first three entries. In (5) the 
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derivatives are understood to be one-sided derivatives at the 
material interface r = a. The pressure p(r) is allowed to have a 
jump discontinuity at r=a and is assumed smooth elsewhere. 

The boundary of the sphere, is subjected to a uniform tensile 
dead load normal traction of magnitude p0 > 0 and so yields 
the boundary condition 

rRR{b)=P0 ( " j ^ r ) =Poiv(b)] (7) 

We note that the boundary conditions of vanishing shear trac
tions are satisfied identically. 

In the absence of body forces, the composite sphere will be 
in equilibrium provided that div T = 0, which will be true pro
vided that 

holds in each individual phase and that the normal traction 
component is continuous at the material interface, i.e., 

TRR(a-) = TRR(a + ) . (9) 
Thus, the problem to be solved is the following: For a 

prescribed value of the dead load traction p0 > 0, we seek a 
pressure field p(r) and a constant c>0 such that (8), (9), and 
(7) are satisfied where TRR ,Tee,rti are given by (5), (6). In ad
dition, if c>0, then the condition for a traction-free cavity 
surface 

r^(0) = 0 (10) 

must also hold. 
It may be readily shown that one solution to the foregoing 

problem, for all values of p0, is 

p(r)= 1^(1,1,1; r)-po,c = 0. (11) 
This corresponds to the trivial homogeneous state of deforma
tion R(r) = r with corresponding stresses rRR-Tee=T^ =pD. 
Thus, even though the pressure p given in (11) is, in general, 
discontinuous across the interface r = a, the corresponding 
stresses are continuous. 

Solutions for which c>0, corresponding to the presence of 
a traction-free cavity at the origin, have been obtained by 
Horgan and Pence (1989). The applied load p0 necessary to 
sustain a cavity of radius c is found to be 

2/3 * ( 1 + c 3 / a
3 ) 1 / 3 dW2 p°=(1+ir) [ L ^ ^ - D - ' ^ T ^ 

(1 + c 
3/„V /3 

dW1 

dv 
(12) 

where, following Ball (1982), the notation 
Wi(x)=Wi(x-2,x,x) (/=1,2) (13) 

is used. Thus, for a given p0, solutions involving a traction-
free internal cavity exist only for those values of radius c {if 
any) that are positive roots of (12). The associated radial 
stress component TRR given by (5) can then be written in the 
form 

f" , .div1 

« W = 3 3 1 / 3 ( U 3 - l ) - , - r - ( « ¥ « • 
Ju+cW)1 '3 dv 

. 3 / A 3 .1 /3 

P 0 ( l + C
3 / & 3 ) - ^ 3 + ( 3 / 3 , 1 / 3 ( ^ - D -

0 < r < a 

, dW2 

' -—-(v)dv, 
dv 

a<r<b 

Per/**!3 R>/Mi 

(14) 

Fig. 1 Variation of the deformed cavity radius c/b with applied dead 
load traction P 0 / P I for a composite neo-Hookean sphere with strain-
energy density given by (29) where a = b/2, / i 2 = 2/^, pcrlm = 5/2 

Note that the continuity of TRR at the interface r = a is ensured 
by (12). The remaining normal stresses r e e , r$$ follow from 
(5) as 
Tm = T$<b = vWyiv~2, v, v)-v-2Wi

l(v-2, v, v) 

+ TRR (»=1,2), (15) 
where v = v(r) is given in (6) and the superscript / refers to the 
appropriate phase. Unlike the radial stress, these stresses are 
discontinuous across the interface r = a. 

3 Bifurcation and Cavitation 

Consider a quasi-static loading program in which the com
posite sphere is subjected to a dead load p0 that increases 
slowly from zero. Cavity formation and growth is described 
by the relationship p0 =p0(c) given in (12). This relationship 
was examined in detail by Horgan and Pence (1989) for the 
special case in which both constituent materials are neo-
Hookean. One of the main results obtained shows that this 
process can occur in two distinct ways. On the one hand, 
smooth cavitation can take place, by which we mean that a 
cavity of zero radius is formed at the critical load pcr with the 
cavity radius subsequently increasing continuously as p0 is 
further increased. The critical load/?cr is the value at which the 
curve p0=p0(c) bifurcates from the straight line c = 0 cor
responding to the trivial homogeneous solution. It is shown in 
Horgan and Pence (1989), using an energy minimization treat
ment within the class of radially symmetric solutions, that this 
trivial homogeneous solution is unstable for p>pcr. Smooth 
cavitation will occur only if the function p0(c) is monotonical-
ly increasing in c so that the curvep0 =p0(c) must bifurcate to 
the right at pa=pcr (see, e.g., Fig. 1). On the other hand, a 
snap cavitation phenomenon may instead occur. By this we 
mean that a cavity of finite radius forms abruptly at a value of 
dead load p less than or equal to pcr. One situation that leads 
to this circumstance is the case in which the function p0(c) is 
monotonically decreasing for small values of c but is 
monotonically increasing thereafter (see, e.g., Fig. 2). The 
value of the transition load p can be taken either as the value 
at which the trivial homogeneous solution loses absolute 
stability (i.e., ceases to furnish an absolute energy minimum) 
or, alternatively, as the value at which this trivial solution 
loses metastability (i.e., ceases to furnish a relative energy 
minimum). In the former case, p<pcr (as shown in Fig. 2), 
whereas in the latter case p=pcr. A detailed stability analysis 
establishing the foregoing assertions for the neo-Hookean 
composite sphere is carried out in Horgan and Pence (1989). 

Our purpose in this section is to establish explicit conditions 
which determine whether bifurcation at p0 =pcr is locally to 
the right or to the left for the case where the two constituent 
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P/^1 Pcr/^1 Po/^1 

Fig. 2 Variation of the deformed cavity radius clb with applied dead 
load traction p0//ii for a composite neo-Hookean sphere with strain-
energy density given by (29) where a = b/2, P2=n-\I4, P V I =1.95, 
Pcr'Mi=5/2 

materials are general homogeneous, incompressible isotropic 
elastic materials. The critical load at which bifurcation occurs 
is found by letting c—0 + in (12) and so 

J> 1) 
dv 

(16) 

It is important to observe from (16) that the material 
dependence of p„ rests solely on the strain-energy density Wx 

of the material occupying the inner core 0 < r < a . For the case 
of a homogeneous incompressible sphere, the value of pcr is 
also given by (16) with Wx replaced by the strain-energy W oi 
the homogeneous material (Ball, 1982). 

Since the integral in (16) is improper, pcr may or may not be 
finite, and so cavitation may or may not be possible. Clearly, 
cavitation can occur in composite spheres only when a 
homogeneous sphere composed of the inner material alone 
allows for cavitation. Henceforth we assume that this is the 
case, so that the integral in (16) is assumed to be finite. As 
regards the lower limit in (16), it is shown in the Appendix that 

dWl d2 W1 

(17) 

where ft, denotes the shear modulus for infinitesimal deforma
tions of the inner material. Thus, by l'Hopital's rule, the limit 
of the integrand in (16) is finite as 1;—1. Consequently, the 
question of whether or not p„ is finite depends on the 
behavior of Wl(v) for large values of the stretch v. For a 
discussion of the analogous issue for the case of a 
homogeneous incompressible sphere, we refer to Ball (1982). 

We turn now to the development of a criterion which deter
mines whether the bifurcation at pcr is to the right or to the 
left. Assume, for the moment, that Figs. 1, 2 are typical. In 
this case, bifurcation to the right corresponds to smooth 
cavitation while bifurcation to the left corresponds to snap 
cavitation. In general, snap cavitation must occur if bifurca
tion is to the left. Whether or not bifurcation to the right im
plies smooth cavitation depends on whether or not the curve 
Po =Po(c) remains monotonic. 

To determine the local character of the bifurcation at 
Po =Pcr> w e examine the curve p0 =p0(c) as given in (12) for 
small values of c. One easily finds that 

p0=pcr + K(c/b)'i+o(ci), a s c - 0 (18) 

where 

K=\\m dp0/dc3. (19) 

2/VP< 

2.0 3.0 a 
=3 , h 3 . Fig. 3 Semi-infinite strip 0<f = a lb < 1 , /3 = /i2'/'i > u - F° r parameter 

pairs (/3, f) in region I, bifurcation occurs to the right while in region II, 
bifurcation occurs to the left. For the curve shown, pcr = 5^/2. 

This expression for K becomes 

K=- •iy 
xdWx 

dv 

dW2 

dv 
(20) 

(21) 

1 / b \ 3 

'~T\-T) ^ ( v i 

+x[(-f)3-1fc(,',-1)" 
It is shown in the Appendix that 

dW 
lim ( ^ - l ) ™ i _ — = 4M ,0'=1,2), 
y - l dv 

where the \ii > 0(/' =1 ,2) are the shear moduli for infinitesimal 
deformations of the inner and outer materials, respectively. 
Using the notation 

a3 

/ = - £ 5 - , 0 < / < l , (22) 

for the volume fraction of the core material to the total 
material, K in (20) can now be written 

K= 2/3 [pcr - 2/x,/"' + 2 to(f-' - 1)] . (23) 

We see from (18) that ifK>0, bifurcation is to the right while 
if K<0, bifurcation is to the left. Although our primary in
terest in this work concerns the composite sphere, it is of in
terest to observe that as / -~ 1 in (23), one obtains the value of 
K appropriate to the homogeneous sphere composed of the in
ner material, namely 

Kh = M{pcr-2H). (24) 

Henceforth, we shall assume 

/ V - 2 / t . X ) , (25) 

so that bifurcation for the homogeneous sphere is always 
assumed to be to the right. 

Returning to (23), we discuss the circumstances which deter
mine whether the bifurcation is to the right or to the left. It is 
convenient to treat these two cases with reference to the 
schematic diagram in Fig. 3. In this figure, the semi-infinite 
strip 0 < / < l , 0<(3< oo(/3 = n2/fi{), is divided into two regions 
I, II by the monotone decreasing curve 

f=W-l)/W-Pcr/(2^)] (26) 

on which K=0. If (/3, f) lies in region I, then K>0 and so 
bifurcation is to the right while if (/3, f) lies in region II, then 
K<0 and so bifurcation is to the left. One can discuss this 
diagram with reference to a composite sphere of either fixed 
geometric properties together with varying material properties 
or vice versa. Taking the former view we see that, for 
/>(2/i!//?„.), bifurcation is always to the right. Thus, if the 
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Fig. 4 Variation of the stresses TRRM, ree{r) = Tti{r) with undeformed 
radius r subsequent to cavitation for a composite neo-Hookean sphere. 
Here, n2 =

 2*»1 > a = b'4> Po = 2.96^. 

volume fraction of the core to the total volume exceeds 
2fil/pcr, bifurcation is to the right regardless of the material 
properties of the outer material. Taking the latter view, we 
also see that, for /3 > 1, bifurcation is again always to the right. 
This corresponds to ^ — Pi- Thus, if the material in the sur
rounding shell is stronger in infinitesimal shear than the core 
material, bifurcation is to the right irrespective of geometry. 

On the other hand, the condition for bifurcation to the left 
requires both geometric and material restrictions. These 
restrictions may be written as 

f<(2^/pcr) 

and 

l>-2< 
1-f ' 

(27) 

(28) 

Thus, the occurrence of bifurcation to the left in a composite 
sphere requires a sufficiently small core surrounded by a shell 
of sufficiently weak material. 

For the special case of a composite sphere composed of two 
neo-Hookean materials perfectly bonded at the interface r = a, 
one has 

^'(X,, A2, X3) = -^(X? + Xl + Xi 

M, H*(X„ X2, X3) = J^<X? + X1 + X:3 

3) 

2 -3) 

(29) 

In this case, 
= 5/*,/2 

and the preceding considerations regarding bifurcation to the 
right or left can be simplified (see, Horgan and Pence, 19891)-
In fact, Figs. 1 and 2 exhibiting both smooth and snap cavita
tion pertain to the composite neo-Hookean sphere. 

4 Stress Distribution 

We proceed now to discuss the stress distribution in the 
composite sphere. Of particular interest is the influence of 
cavitation at the center on the possibility of debonding at the 
interface r = a for sufficiently large applied loads p0. 

The stresses rRR(r), Tee(r), Tti(r), subsequent to cavitation, 
are given in (14), (15). Prior to that, one has only the constant 
stress distribution TRR = ree = T$# =p0. For simplicity in what 

The shear moduli employed in Horgan and Pence (1989) are one-half the ac
tual infinitesimal shear moduli used here. 

follows, we confine our subsequent discussion to the case of 
the composite neo-Hookean sphere (29). Thus, in this case, 
(14) becomes 

v»=-§- / c3 \ ~4/3 / c3 \ - 1 / 3 1 
(1 +—) + 4 ( 1 + — ) J . O ^ a , 

^w=P0(i+4-)"2/3+f[(1+4-) 
/ c3 \ -4/3 

-(1 +-P-) 
/ c3 \ ~1/3 / c3 \ - 1 / 31 

(31) 

while (15) reads 

ree = '** = /i/ [d + ̂ Vr3)2'3 - (1 + c3//-3)^3] 

+ TRR 0'=1,2). 

Thep0=/?0(c) relation (12) now becomes 
I / ri \ 2/3 

(32) 

Po=-
( c V U*i-lh) 

Id + ^ r r 33 
' +4(1+-^- )" 

{< ' 
a i 

+^-)-4/3+4(i+-^r i /3] (33) 

It is readily verified that TRR is a continuous monotone in
creasing function ofrinO<r<£>, with a discontinuity in slope 
at the interface r-a. Similarly, T00 = T$$ are easily shown to 
be monotone decreasing functions of r in the respective ranges 
0<r<a, a<r<b, with a jump discontinuity at the interface 
r = a. Since TRR(0) = 0, it is clear from (32) that Tee = T44, —oo 
as r—0. In Fig. 4, all these stresses are plotted for a case with 
Hi <fi2- When fii>fi2> the jump in Tm=T^ is in the opposite 
direction to that in Fig. 4, while the slope discontinuity in TRR 
has opposite character. Observe from (32), that 
Tee(r) = Tit(/•)> TRR(r) for c>0. 

Another feature of interest concerning the stresses rRR(r), 
Tee(r), Tit(r) immediately after cavitation is the presence of a 
boundary layer near the cavity wall when smooth cavitation 
taken place. To see this, consider the limit as c—-0 + in (31), 
(32), and (33) for fixed r>0. Thus, from (33), we find lim 

(30) p0(c) = 5/i,/2=pcr and so (31)2 yields, for fixed r in [a, b], 

lim TRR(f)=pcn (a<r<b), 
c~0+ 

whereas (31)! yields, for fixed r in (0, a], 

lim rRR(r)=pa 
c-0 + 

,(0<r<a). 

(34) 

(35) 

Since T M ( 0 ) = 0, (34) and (35) show that the radial stress suf
fers a rapid growth near the cavity wall for applied dead loads 
p0 slightly larger thanpCT. The boundary layer is illustrated in 
Fig. 5, for different values of p0. From (32), it is clear that a 
similar boundary layer exists in the stress components Tee, 
Ti<s,. Observe that such severe boundary layers for the stresses 
do not occur in the case of snap cavitation since in this case the 
deformed cavity radius c jumps to a finite value upon cavity 
formation. 

Observe also, from Fig. 5, that the values of the radial stress 
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W M , 

Fig. 5 Variation of the radial stress rRR(r) with undeformed radius 
subsequent to cavitation for a composite neo-Hookean sphere. Here, 
n2 = 2^1, a = b/4. 

TRR, for fixed values of rinO<r<a, decrease as the dead load 
p„ increases beyond the value pcr. In fact this monotone 
property may be verified directly from (31),, since this equa
tion shows that drRR/dc<0 (for fixed r in 0</-<a). In Fig. 6, 
we plot the values of the radial stress at the interface r = a ver
sus the applied dead load traction p0 for a sphere of the same 
material and geometric configuration as used in Fig. 5. The 
straight line portion of the graph corresponds to the constant 
stress field that occurs prior to cavitation. Figure 6 is typical 
when smooth cavitation taken place. In the event of snap 
cavitation, the corresponding figure exhibits a jump discon
tinuity in TRR{a) at the value of pQ =p at which cavitation oc
curs (Fig. 7). 

The foregoing considerations have immediate implications 
relating to the issue of possible debonding at the material in
terface r=a. Suppose that the interface bond is sustained only 
so long as the normal stress at the interface remains less than a 
threshold value. Thus, debonding would occur if 

TRR(a) = Td (36) 

where rd is an independently determined measure for the 
strength of the interface bond. Consider again a quasi-static 
loading process in which p„ increases slowly from zero. In the 
absence of cavitation, interface debonding would occur when 
p0 reaches the value rd. If rd<pcr for smooth cavitation 
(rd<p for snap cavitation), then in the quasi-static process 
just envisioned, debonding occurs when/?0 = rd and cavitation 
is no longer relevant. On the other hand, if Td>pcr(Td>p), 
then cavitation occurs when p0=Pcr(Po=P)- The resulting 
stress relief at the interface then precludes the criterion (36) 
from being met and thus eliminates the possibility of interface 
debonding. 
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A P P E N D I X . / dW dW / dW dW\ I 
ti = 2{ + ) (A4) 

Verification of (17), (21) "e re , '• = X? + X? + Xh ** = ̂  + Xfrf +}W are the usual 
first and second invariants. Thus, from 041) we have 

For our purposes here, it is convenient to drop the W(v) = W^I^v), I2(v)) 045) 
superscript notation on W introduced in (2). To establish (17), where 
we recall from (13) that Il(v) = V-<+ 2v2J2(v) = 2V-2+ v*. 046) 

W{v)= W(v~2, v, v) 041) Using the chain rule, and observing that 

dh dl2 
and so —L = _^_ = o at v= 1, 047) 

dv dv 
dW(v) 

-= -2v-3Wi(v-2, v, v) + 2W2(v~2, v, v) 042) it is readily verified that 
dv 

on using the chain rule and the fact that W2(v,~2 v, cPW{\)_/ dW d2Il dW d2I2\ | 
v)=W3(.v-2,v,v).Thm, dvi ~ \^~~dvT + ^I2~ ~W) I/, =/2 = 3 ( ' 

dW _ _ _ 
dv ( l ) - 2 [ W2(l, 1, 1) W,(l. 1. 1)1 - 0 , 043) a 0 d SQ h f o l l o w s f r o m ( y 4 4 ) o n u s i n g ( / 4 6 ) > t h a t 

d2 W(\) 
which establishes (17)! as desired. j — = 12/x, 049) 

To verify (17)2, we recall from finite elasticity theory (see, dv 
e.g., Ogden, 1984) that the shear modulus for infinitesimal which establishes (17)2 as desired. 
deformations of an incompressible_ homogeneous isotropic Finally, (21) may be verified by using 043), l'Hopital's rule, 
material with strain-energy density W(IX, I2) is given by and 049). 
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Void Growth in Elastic-Plastic 
Materials 
Three-dimensional finite element computations have been done to study the growth 
of initially spherical voids in periodic cubic arrays. The numerical method is based 
on finite strain theory and the computations account for the interaction between 
neighboring voids. The void arrays are subjected to macroscopically uniform fields 
of uniaxial tension, pure shear, and high triaxial stress. The macroscopic stress-
strain behavior and the change in void volume were obtained for two initial void 
volume fractions. The calculations show that void shape, void interaction, and loss 
of load carrying capacity depend strongly on the triaxiality of the stress field. The 
results of the finite element computation were compared with several dilatant 
plasticity continuum models for porous materials. None of the models agrees com
pletely with the finite element calculations. Agreement of the finite element results 
with any particular constitutive model depended on the level of macroscopic strain 
and the triaxiality of the remote uniform stress field. 

Introduction 
The nucleation, growth, and eventual coalescence of voids 

by plastic deformation is an important failure mechanism in 
ductile metals (Rogers, 1960; Bluhm and Morrisey, 1966). In 
ductile fracture, voids are nucleated under tension at hard par
ticles which crack or tear loose. The voids grow due to plastici
ty and eventually coalesce to form a microcrack or cause the 
propagation of an existing crack. In addition, the collapse of 
voids due to plasticity occurs in the pressing of metal powders 
at certain rates and temperatures (Helle, Easterling, and 
Ashby, 1985). In the pressing of powder metals, particles are 
forced together and bonding across necks develops between 
the powders at which stage the porosity is interconnected. At a 
later stage, however, the pores become isolated. Rate-
independent plasticity can dominate pore contraction, 
although the final closure occurs by creep if the temperature is 
sufficiently high. 

For progress in understanding both the phenomenon of 
ductile fracture and the process of nonisostatic pressing, it is 
desirable to have models for the growth/collapse of voids in 
arbitrary states of stress. McClintock (1968) developed growth 
predictions for isolated cylindrical voids, while later Rice and 
Tracey (1969) obtained results for spherical holes by minimiz
ing a functional of the velocity field. The model for spherical 
holes was later improved by Budiansky, Hutchinson, and Slut-
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sky (1982). The solutions show the strong effect of stress triax
iality on the rate of growth. In all cases, the analysis was car
ried out for a single void in an infinite matrix and so the results 
are valid only for a porosity which is a small fraction of the 
whole. On the other hand, Needleman (1972a) and Tvergaard 
(1981) treated cylindrical holes in a square array subject to a 
macroscopically uniform state of stress. They used the finite 
element method to obtain the solutions. Interactions between 
voids are apparent in the velocity fields and the local stress 
distributions. The coupling is probably stronger in these two-
dimensional problems than in the interactions between initial
ly spherical voids. In an attempt to understand such three-
dimensional effects, Andersson (1977) and Tvergaard (1982) 
used the finite element method to analyze the growth of a 
spherical void in a high triaxial stress state constrained to ax-
ially symmetric deformation in a cylinder. Because of the con
straint, the implied interaction between neighboring voids is 
still strong. Hancock (1986) has used similar calculations of 
axisymmetric deformations to study void-void interactions 
and observed that there are strong couplings between voids on 
the 45 deg planes. 

Another approach to modeling void growth extends the 
Rice and Tracey approach by using the same method applied 
to spherical cells containing spherical holes. This technique 
was used by Gurson (1977a,b) to study the behavior of voids 
in high volume fractions for a variety of states of stress. At 
low volume fractions, the results agree with those of Rice and 
Tracey (1969). The rate of dilatation of the voids was deter
mined by Gurson (1977a,b) and presented in indirect form 
because the main purpose was to obtain a yield condition and 
associated flow law for a macroscopic composite containing a 
volume fraction of spherical voids. The stress-strain laws that 
resulted are presented in the Appendix to this paper. 
Modifications of these laws were developed by Tvergaard 
(1981,1982) (see Appendix) to improve their agreement with 
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Fig. 1 The three stress states 

calculations of bifurcation into shear banding in square arrays 
of cylindrical holes and axisymmetric spherical holes. 

There is little work on comparing these constitutive laws for 
porous ductile materials with experimental data. Bourcier, 
Koss, Smelser, and Richmond (1986) have shown that partial
ly densified powder metallurgy specimens of Ti and 
Ti-6A1-4V have lower flow stresses than predicted by the 
models of Gurson (1977a,b) and Tvergaard (1981,1982). 
Similarly, Richmond (1987) has data for iron confirming this 
overprediction. Based on these data for Ti, Ti-6A1-4V and 
iron, and on considerations of yielding in shear of a material 
containing a cubic array of spherical voids, Richmond and 
Smelser (1985) have devised an alternative yield function and a 
corresponding flow law which agrees with the experimental 
data. This constitutive law is described also in the Appendix. 

In this paper, the behavior of initially spherical holes in 
cubic arrays is analyzed by a large deformation finite element 
technique and thus follows on from the initial work of Harren 
(1983). A representative fraction of a unit cell is treated with 
appropriate symmetry and periodic conditions to produce 
macroscopically homogeneous deformation. The full, three-
dimensional interactions between voids are accounted for, and 
a moderate and high volume fraction of the voids are studied. 
Simple shear, uniaxial tension, and a state of high triaxiality 
are applied in the calculations. The results are compared with 
the models of Gurson (1977a,b), Tvergaard (1981,1982), and 
Richmond and Smelser (1985) in an attempt to assess which 
conforms most closely to the finite element calculations. 

Problem Formulation 

A cubic array of initially spherical voids in an infinite 
elastic-plastic body was considered. The void sizes and spac-
ings were chosen to give two initial porosities of 6.5 percent 
and 0.82 percent. The material was originally stress-free, and 
monotonically changing principal stresses were applied to the 
infinite body in such a manner that they were aligned with the 
axes of the cubic array. The states of stress were 
macroscopically homogeneous and accounted for pure shear, 
uniaxial tension, and an axisymmetric state of high triaxiality 
as shown in Fig. 1. 

The matrix material surrounding the voids was elastically 
isotropic subject to yielding governed by the Von Mises 
criterion with aj taken as the true flow stress in uniaxial ten-
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Unit Cell with Single Spherical Void 

Fig. 2 Symmetry of unit cell and the one-sixteenth cell used for the 
finite element calculations 

sion. Isotropic strain hardening was used with a power law 
form given by 

(jty'"-(j£.)=**i (1) 
\ a0 / \ CT0 / <J0 

where a0 is the initial yield stress, G is the elastic shear 
modulus, and P is the tensile equivalent plastic strain. 

Large strains and rotations were allowed for through the 
finite deformation formulation of McMeeking and Rice (1975) 
as modified and implemented in the ABAQUS finite element 
code (Hibbitt, Karlsson, and Sorensen (1984)). As such, the 
method is similar to that developed by Needleman (1972b) and 
Osias and Swedlow (1974). 

Because of the periodic arrangement of the voids, it was suf
ficient to consider only a single unit cell consisting of a cube 
containing one void. Each cell deforms into a right 
parallelopiped due to imposed velocities on the boundary. The 
evolving shape was determined by the state of stress. The 
technique of Needleman (1972a) was used to ensure the correct 
rect state of stress. This technique consists of adjusting the 
uniform normal displacement increments of each face of the 
unit cells to ensure that the average true stress on each face 
maintains the desired level as shown in Fig. 1. However, a 
reduction of the size of the problem was possible due to the 
symmetries illustrated in Fig. 2. Those shown in the figure per
tain to the axisymmetric states of uniaxial stress and high 
triaxiality, in which case it is necessary to solve the problem in 
only on sixteenth of the unit cell as shown. In pure shear, the 
one-sixteenth segment and its neighbor across the diagonal 
plane must be used. 

Relative to the one-sixteenth segment shown in Fig. 2, the 
boundary conditions are as follows for the axisymmetric stress 
states. All faces are free of shear traction. The void surface is 
also free of normal traction. The bottom, front, and diagonal 
faces are constrained to have zero-normal velocity. The top 
surface is given a uniform-specified normal velocity. As 
previously discussed, the remaining face on the right is given a 
uniform, normal velocity sufficient to induce the desired 
average true stress, either zero (uniaxial stress case) or 70 per
cent of the average tensile true stress (high triaxiality case). In 
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Fig. 3 Typical finite element mesh used to model the one-sixteenth 
cell of the void-matrix aggregate 

Fig. 4 The deformed mesh for uniaxial tension with an initial void 
volume fraction fj=0.82 percent and hardening exponent N = 0.1 at a 
true strain E3 = 0.70 

the case of pure shear, again, all surfaces are free of shear 
traction and the void is completely traction-free. Relative to 
the one-eighth segment, the bottom, front, rear, and left faces 
are constrained to have zero-normal velocity. The top surface 
is given a specified uniform normal velocity and the face on 
the right is required to have a uniform normal velocity such 
that the average true stress there is the negative of the true 
stress on the top. 

Finite Element Solutions 

The ABAQUS finite element program developed by Hib-

Fig. 5 A contour plot of the equivalent plastic strain ip for uniaxial ten
sion at a true strain E3 = 0.70 with /,- = 6.5 percent and N = .1 

bitt, Karlsson, and Sorensen (1984) was used to solve the 
problems described in the previous section. The large defor
mation updated Lagrangian feature was used with the 
modified Riks algorithm described by Powell and Simons 
(1981) for incrementing the load. This iteration scheme was 
useful since an unstable load-displacement response was ob
tained in the calculations. 

The finite element mesh used for the axisymmetric problems 
is shown in Fig. 3, whereas the mesh for pure shear was simply 
double that shown. The illustrated mesh has 135 twenty-noded 
isoparametric brick elements and 1084 nodes. The dilatation 
in the element was represented by extra degrees-of-freedom. 
The model was freed from locking overconstraint by the 
feature of ABAQUS based on the method of Nagtegaal, 
Parks, and Rice (1974). 

The calculations were carried out incrementally up to 
macroscopic true strains of the order 0.7 for the uniaxial ten
sion state and 0.3 for the pure shear state and the high triaxial 
stress state. The macroscopic true strain is defined to be 
E3 = ln(///0) where l0 is the undeformed length of the edge of 
the unit cell shown in Fig. 2 and / is the current length of the 
unit cell in the x} direction which is vertical in Fig. 1. Typical
ly, 50 increments were necessary to obtain macroscopic true 
strains of the order 0.7 for the uniaxial tension state and 0.3 
for the pure shear state and the high triaxial stress state. In 
each increment, iterations were performed to achieve 
equilibrium at the end of the step. In a typical case, there were 
four iterations which were carried out in ABAQUS using a 
Newton method with a Jacobian formed from the tangent 
elastic-plastic stiffness. 

The calculations were carried out on supercomputers in 
various locations. The Cray 1A at the University of Minnesota 
and the Cray X-MP/48 at the San Diego Supercomputer 
Center were both used. A calculation with 135 elements, 3252 
degrees-of-freedom, 50 increments, and 4 iterations per incre
ment took about 700 minutes on the Cray 1A at the University 
of Minnesota. 
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Fig. 6 Comparison of change in void shape for uniaxial tension 
predicted by the finite element analysis and the Rice and Tracey solu
tion for an isolated void 

Fig. 7 A contour plot of the equivalent plastic strain ; p for pure shear 
at a true strain E3 = 0.25 with f, = 6.5 percent and N = .1 

Results for Growth of Voids in Cubic Cells 

The finite element calculations were carried out for a power-
law hardening matrix material with E/<J0 = 200 and c = 0.3. 
The uniaxial true stress/logarithmic tensile strain law given by 
equation (1) was used with N= 0.1. In this section, the results 
for initial void volume fractions/, of 6.5 percent and 0.82 per
cent are presented for three different loadings: uniaxial ten
sion, pure shear, and highly triaxial stress. 

(i) Change in Void Shape. In the case of uniaxial ten
sion, the initially spherical void elongates in the tensile direc
tion with increasing strain. Figure 4 shows the deformed finite 
element mesh for/,- = 0.82 percent at a tensile true strain of 
0.7. The holes are long and narrow and the ligaments between 
neighboring voids are like columns with a curvilinear cross-
shape for the section. Figure 5, a contour plot of the 
equivalent plastic strain for/; = 6.5 percent, shows that the 
plastic deformation is concentrated in these ligaments. In Fig. 
6, the change in the void's major and minor axes predicted by 
the finite element calculations is compared with the results of 
Rice and Tracey (1969) for isolated spherical voids. The 
almost identical behavior of the two solutions indicates that 
little or no void interaction occurs between neighboring voids 
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Fig. 8 The deformed mesh for the high triaxial stress state, with an in
itial void volume fraction f/=6.5 percent and hardening exponent 
N = 0.1 at a true strain E3 =0.25 

in the cubic array under uniaxial tension. In this way, behavior 
of the initially spherical voids differs greatly from that 
predicted by Needleman (1972a) for cylindrical voids in square 
cells under uniaxial tension. Needleman found that after a 
stage of transverse contraction, cylindrical holes start to grow 
laterally with high strains in the ligaments. The change in 
behavior occurs at moderate strains of 0.3. Therefore, it seems 
that the interaction of transverse neighbors is stronger for 
cylindrical voids than for spherical voids. 

In the case of pure shear, the voids elongate in the tensile 
direction and contract in the compressive direction, but the 
void volume fraction remains almost exactly constant 
throughout the whole load history. Figure 7 is a contour plot 
of tP f o r / = 6.5 percent. In this case, the maximum effective 
plastic strain occurs between neighboring voids in the prin
cipal shear plane. Unlike uniaxial tension, this maximum does 
not occur at the void's surface or in the ligament between 
transverse neighboring voids. Instead, the maximum occurs at 
the intersection of shear, band-like features extending from 
void to void. 

In contrast to the low triaxial stress states, when there is 
high triaxiality, the voids dilate substantially and strong 
neighbor interaction occurs. F o r / = 0.82 percent the void's 
volume increases steadily and the hole remains roughly 
spherical in shape. For the higher initial void volume fraction 
/ = 6.5 percent, the strength of void interaction is more ap
parent. In Fig. 8, the deformed mesh at a tensile strain of 0.25 
shows that the void has started to bulge out towards its 
transverse neighbor. Figure 9, a contour plot of (? for / = 6.5 
percent, shows that the plastic strains are concentrated in the 
ligament and are significantly larger than for the low triaxial 
cases at the same nominal strain. The ligament between voids 
transverse to the maximum principal stress exhibits necking 
behavior, which indicates that the voids are beginning to 
coalesce. 

(if) Initial Yield Predictions. The results of the finite ele
ment calculation can be used also to evaluate the accuracy of 
the existing continuum models for dilatant plastic behavior 
caused by the presence of voids. TheGurson, Tvergaard, and 
Richmond yield conditions of such models have been dis
cussed earlier and are described in detail in the Appendix. One 
method of comparison is to examine the yield point predicted 
by the finite element calculations and the continuum models 
for the three loading conditions. The yield point in the finite 
element calculations is estimated to be at the region of rapid 
reduction of the tangent stiffness in the load deflection curves. 
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Fig. 9 A contour plot of the equivalent plastic strain ip for the high 
triaxial stress state at true strain E3=0.20 with / ,=6.5 percent and 
N = 0.1 
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Fig. 10 Yield stresses predicted by finite element analysis and yield 
surfaces of the Gurson, Tvergaard, and Richmond models 

In Fig. 10, the yield surfaces of the continuum models and the 
yield points predicted by the finite element analysis are plotted 
in the plane of tensile equivalent stress versus hydrostatic 
stress. For the low triaxial stress states of pure shear and 
uniaxial tension, the yield points of the finite element calcula
tions agree best with the Richmond model. This result is in
teresting since the Richmond model is based on the concept of 
yielding being concentrated on shear bands at 45 deg to the 
principal stress directions and is more persuasive in the case of 
pure shear. For pure shear with an initial void volume fraction 
of 6.5 percent, the finite element results predict yield at 
E = 0.49 <70 when the pure material yields at 2 = 0.58 a0. By 
comparison, initial yield occurs at £ = 0.54 a0, 0.52 a0, and 
0.48 cr0 f ° r the Gurson, Tvergaard, and Richmond models, 
respectively. In the uniaxial tension case, the finite element 
calculation predicts yield at E = 0.85 a0 for an initial void 
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Fig. 11 Comparison of the stress-strain behavior of the finite element 
analysis and the continuum models for uniaxial tension, with an initial 
void volume fraction ft = 6.5 percent and a hardening coefficient N = 0.1 

volume fraction of 6.5 percent where the Gurson, Tvergaard, 
and Richmond models predict yield at E = 0.93 a0, 0.89 a0 and 
0.84 CT0, respectively. 

For the high triaxial stress state, the finite element calcula
tions agree better with the Tvergaard and Richmond models. 
For an initial void volume fraction of 6.5 percent, the finite 
element results predict yield at E=1.66 a0 compared with 
E = 3.33 ff0 for the material without voids. By comparison, 
yield occurred at E= 1.93 cr0, 1.69 a0, and 1.83 a0 for the Gur
son, Tvergaard, and Richmond models, respectively. This 
behavior is not surprising, since Tvergaard's modification of 
Gurson's equation is based partially on axisymmetric finite 
element results for a high triaxial stress state. Richmond's 
modification of Gurson's equation is based on kinematic 
shearing modes at low triaxiality, but retains the behavior of 
the solution by Torre (1948) for a hydrostatic tension in a 
rigid-plastic material containing spherical voids. 

(Hi) Plastic Flow Behavior. In addition to the yield point 
calculation, the stress-strain curves of the finite element com
putations have been used for comparison with the plastic flow 
characteristics of the continuum models. The results of this 
comparison depend strongly on the macroscopic stress state. 
In the low triaxiality cases, where the void volume remains 
roughly constant, the stress-strain curves of the finite element 
calculation become relatively stiff at high strains compared to 
the behavior at low strain and further loss in the material's 
load carrying capacity due to void growth is negligible. 
However, for the high triaxiality case, rapid void growth 
causes a substantial decay in the load-deflection curve of the 
finite element calculation. It was found that this type of 
behavior was not completely described by any particular con
tinuum model. 

Figure 11 shows the stress-strain curves predicted by the 
finite element analysis and the three continuum models for 
uniaxial tension with/ , = 6.5 percent and 7V=0.1. The finite 
element computation rapidly diverges from the initial yield 
prediction of the Richmond model and conforms to the 
Tvergaard prediction up to about 0.1 true strain. From a 
strain of 0.2 to about 0.4 strain, the numerical results stiffen 
toward the Gurson prediction. However, for true strains 
above 0.4, the finite element model maintains a higher load 
carrying capacity than for all three continuum models. The 
behavior of the finite element computation for/) = 0.82 per
cent is similar to the higher porosity case. The results agree 
with the Tvergaard prediction at low strain, and diverge to the 
Gurson result with increasing strain. At high strains, a stiff 
response compared with the continuum models is observed. 
For uniaxial tension, the voids of the finite element analysis 
grow at a slower rate than the voids of the continuum models. 
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Fig. 12 Comparison of the stress-strain behavior of the finite element 
analysis and the continuum models for pure shear, with an initial void 
volume fraction /,- = 6.5 percent and a hardening coefficient fV = 0.1 

1.0 

o 
to 

N 0.6 

0.4 

0.2 

0.0 

1—1—r 

J L. 

Pure Material 
Gurson Material 
Tvergaard Material 
Richmond Material 
Finite Element Results 

I I I I I I I l_ 

f—Ai 

T 
0.05 0.10 

True Strain E3 
0.15 

Fig. 13 Comparison of the stress-strain behavior of the finite element 
analysis and the continuum models for pure shear, with an initial void 
volume fraction /; = 0.82 percent and a hardening coefficient N = 0.1 

At high strains, the void volume fraction predicted by the con
tinuum models increases at an accelerating rate while the rate 
of increase of the void volume fraction predicted by the finite 
element method seems to be tending towards a low asymptotic 
value. Since they are idealized to remain spherical, the voids of 
the continuum models are modeled as growing in the 
transverse directions and thus interact strongly with neighbor
ing voids. However, the voids of the finite element solution 
grow as ellipsoids and give rise to ligaments which only change 
their cross-sectional area slowly. These ligaments have a larger 
cross-sectional area and are capable of carrying more load 
than the ligaments surrounding spherical voids of the same 
current volume fraction. This determines the difference bet
ween the flow stress predictions of the continuum models and 
the finite element predictions, as summarized in Fig. 11. The 
dominance of void shape change in the finite element results at 
high strains results in lower void growth rates which, in turn, 
results in higher load carrying capacity. This explains why the 
finite element model does not lose load carrying capacity at 
high strains like the continuum models. This result indicates 
that, in addition to the void volume fraction, internal 
variables are required in the continuum models to account for 
the effect of void shape changes. 

Figure 12 shows the true stress-strain behavior of the finite 
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Fig. 14 Comparison of the stress-strain behavior of the finite element 
analysis and the continuum models for the high triaxial stress state, 
with an initial void volume fraction f, = 6.5 percent and a hardening coef
ficient N = 0.1 

element model and the continuum models for pure shear 
loading with an initial void volume fraction of 6.5 percent and 
a hardening exponent of 0.1. As in the uniaxial stress case, the 
finite element prediction diverges rapidly from the initial 
agreement with the Richmond model. At strains larger than 
0.01, the agreement between the Tvergaard model and the 
finite element results is good. At this stage, the finite element 
results predict a loss of load carrying capacity of 11 percent 
compared to the material without voids. The loss of load 
carrying capacity predicted by the Gurson, Tvergaard, and 
Richmond materials are 7, 10, and 17 percent, respectively. 
Figure 13 shows the true stress-strain behavior for the finite 
element analysis and the continuum models for the lower in
itial porosity of 0.82 percent. Even though the finite element 
prediction of initial yield agrees best with the Richmond 
model, continued straining increases the macroscopic flow 
stress of the cubic cell until at 0.05 strain the effective value is 
only slightly lower than the prediction of the Tvergaard 
model. However, thereafter, the trend is for the finite element 
results to move gradually away from the Tvergaard prediction 
and back down towards the Richmond model. Overall, 
though, the Tvergaard model is in best agreement with the 
finite element calculations. 

Unlike the low triaxial stress states, the character of the 
finite element calculation for the high triaxial stress state 
depends more on the initial void volume fraction. Figures 14 
and 15 show the true stress-strain behavior of the finite ele
ment and continuum models with initial porosities of 6.5 per
cent and 0.82 percent, respectively, both with a strain-
hardening exponent of 0.1. In each case the finite element 
calculation reaches a maximum in load in the early stages of 
straining. For an initial void volume fraction of 6.5 percent, 
this maximum is followed by a rapid drop in the load carrying 
capacity compared with the continuum models. However, this 
sharp drop is not observed in the lower initial porosity 
material. As noted earlier, in the finite element calculations, 
the voids for the 0.82 percent initial porosity remain spherical, 
while the voids for the 6.5 percent initial porosity bulge out 
towards their neighbors. It is clear that there is a strong void-
void interaction in the high void volume fraction case and this 
gives rise to the rapid decay of the flow stress for the finite ele
ment calculations in Fig. 14. By comparison, the Richmond 
model agrees very well with the finite element results up to 
strains of 0.1. However, at higher strains, all the continuum 
models overestimate the load carrying capacity at high 
porosities because they underestimate the void-void interac
tion. It is of some interest that the Gurson model predicts 
quite well the void volume fraction in the finite element 
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Fig. 15 Comparison of the stress-strain behavior of the finite element 
analysis and the continuum models for the high triaxial stress state, 
with an initial void volume fraction f, = 0.82 percent and a hardening ex
ponent IV = 0.1 

calculations above strains of about 0.05 in the high initial 
porosity case. However, this agreement does not lead, in turn, 
to a good agreement between the macroscopic flow stress. By 
contrast, all of the continuum models overpredict the void 
volume fraction of the finite element calculations when the in
itial porosity is 0.82 percent, although the Gurson predictions 
are the best of the three models. In Fig. 15, it can be seen that, 
at first, the Tvergaard model agrees best with the finite ele
ment calculations. After a strain of about 0.05, the finite ele
ment results seem to be converging on the Gurson predictions, 
although, as just noted, the Gurson model does not predict the 
void volume fraction very well. At the largest strain attained in 
the finite element calculation for /; = 0.82 percent (nearly 
0.15), the void volume fraction is about 4 percent. Extrapola
tion of the void growth trend in this finite element calculation 
indicates that at a strain of 0.25, the void volume fraction 
would be about 6.5 percent. Thus, the strong void-void in
teraction observed in the case/, = 6.5 percent should set in and 
soften the response of the cubic cell model when the strain is 
around 0.25, if not earlier. 

Discussion 

The results of the finite element calculations indicate that, 
depending on the level of strain, void shape change and void-
void interaction influence the macroscopic stress-strain rela
tionship of an elastic-plastic material containing a cubic array 
of initially spherical voids of equal size. It is to be expected 
that the same phenomena will influence the overall stress-
strain behavior of materials containing more random distribu
tions of voids of various sizes and shapes. The simplifications 
used in the calculations presented in this paper do not allow us 
to address the features of the behavior arising from the ran
dom nature of void size, shape, and distribution. However, we 
assume that the special arrangement of a cubic array of initial
ly spherical voids of equal size behaves under plastic straining 
in a manner which reflects the basic features of the more 
general case when somewhat equi-axed cavities are involved. 
This can also be said of calculations based on spherical or 
ellipsoidal voids in circular cylinders (Andersson, 1977; 
Tvergaard, 1982; and Hancock, 1986) or spherical voids in 
spherical cells (Gurson (1977a,b)) which have been used by 
others to generate models for the ductile behavior of a 
material containing voids. However, the cubic cell used here 
has the advantage that it fills space. In addition, nonaxisym-
metric stress states, such as pure shear, can be studied easily 
using the cubic array. In consequence, we believe that our 
calculations provide a reliable basis for the assessment of con
tinuum elastic-plastic constitutive laws (Tvergaard, 1981,1982; 

Gurson, 1977a,b; and Richmond and Smelser, 1985) 
developed to describe materials containing voids, especially in 
the case where the voids are of uniform size and initially 
spherical. 

None of the three continuum models (Gurson, 1977a,b; 
Tvergaard, 1981,1982; Richmond and Smelser, 1985) repro
duce all aspects of the stress-strain behavior of the cubic array. 
It is interesting that even in the high triaxiality case, which all 
three are designed for, the continuum models are not precise. 
It should be said that for low void volume fractions and 
substantial strains greater than 0.1, the Gurson model is 
reasonably good in the high stress triaxiality situation. 
However, the slope of the stress-strain curve in this case is 
modeled less accurately by the Gurson equations (a deficiency 
of all the models). Thus, material behavior sensitive to the 
slope of the stress-strain curve, such as shear banding, may 
still not be reproduced well by this model. In other situations, 
void shape change or void-void interactions lead to different 
continuum models being valid at different strain levels. The 
simplest situation is pure shear, where initial yielding takes 
place at the level predicted by the Richmond model, but as 
strain increases, the flow stress rises to the Tvergaard level. 
Enhanced continuum models with additional internal 
variables, such as those proposed by Becker, Smelser, and 
Richmond (1985) and Hancock (1986), are necessary to allow 
for the macroscopic behavior influenced by void shape change 
and void-void interaction. 

The comparisons made so far relate continuum models to 
cubic cell calculations carried out by the finite element 
method. We have made no attempt to compare the finite ele
ment calculations with experimental measurements. However, 
the data for partially densified powder metallurgy specimens 
of Ti-6A1-4V (Bourcier et al., 1986) and iron (Richmond, 
1987) indicate that the flow stresses are lower than those 
predicted by the Gurson model and also by the softer 
Tvergaard model. Indeed, Richmond (1987) favors the Rich
mond model, softer still, to simulate the stress-strain curves of 
the powder metallurgy specimens. In this sense, the finite ele
ment cubic cell calculations presented here predict a flow 
stress for porous materials which is too high. It is possible that 
features not present in the cubic cell calculations, such as in-
homogeneity of particle size, shape and distribution, are 
responsible for the softness of the response of the stress-strain 
behavior in the experiments. Indeed, Bourcier et al. (1986) and 
Thomson and Hancock (1985) have postulated that, with ran
dom distribution of particles, there are large colonies of voids 
surrounded by nearly incompressible voidless material. This 
situation would create higher triaxial stresses in the regions of 
high void concentration and, consequently, a larger loss in the 
material's load carrying capacity. 
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A P P E N D I X 

Elastic-Plastic Continuum Models For Materials With 
Voids 

The macroscopic stress E in a representative element of the 
composite material composed of solid and voids is the volume 
average of the local stress a. The average is taken over the 
solid and the void space. Macroscopic yielding of an isotropic 
composite can be phrased in terms of a function of 
macroscopic stress, uniaxial flow or yield stress oy of the 
matrix material, and internal variables representing the void 
volume fraction / . Gurson (1977a,b) developed an isotropic 
yield function by considering spherical voids contained within 
spherical cells. Flow fields were considered for a variety of 
stress states and an upper-bound technique was used to deter
mine the yield function. Gurson approximated his numerical 
results with 

* = - ^ - + 2 / ? 1 c o s h ( - ^ - ) - ( l + ^ 2 / ) = 0 (A\) 

with qi=q2 = l. The macroscopic tensile equivalent stress is 
defined, as usual, by 

v=-Z*W (42) 

where E' is the macroscopic stress deviator. The form stated 
in equation (A I) was intended primarily for conditions of high 
triaxiality. For values of $ < 0, the material responds elastical-
ly and * > 0 is forbidden. It should be noted that w h e n / = 0 , 
the yield condition (Al) reduces to the standard Von Mises 
form. 

Tvergaard (1981,1982) modified the original Gurson func
tion by introducing the parameters qt and q2. Tvergaard sug
gested the values qx = 1.5 and q2 = q\ based on considerations 
of bifurcation in shear of a square array of cylindrical holes. 
These values and form (A\) are used in this paper when the 

"Tvergaard material" is referred to. The form 041), with 
ql=q2 = l, is used as the "Gurson material." 

Richmond and Smelser (1985) have also proposed a modi
fied form of Gurson's yield surface. One reason for this 
modification was the possibility that shear bands could 
dominate the yielding process, or that shear bands could easily 
develop after yielding. It was noted that a cubic array of 
spherical voids may yield in shear at a lower stress than 
predicted by the laws of Gurson or Tvergaard. Richmond and 
Smelser (1985) argued that an effective volume fraction of 
voids could be calculated on a two-dimensional surface giving 
the maximum porosity. For cubic arrays of voids, this gives an 
effective volume fraction proportional to / 2 / 3 . However, for 
high triaxial stress states, a yield function based solely on this 
effective volume fraction results in yielding at very low 
stresses. For this reason Richmond and Smelser (1985) also 
weighted the effect of the mean stress on the yield surface to 
obtain better agreement with calculations by Torre (1948) for 
voids in a rigid-perfectly plastic material under a pure 
hydrostatic load. These considerations just discussed lead to a 
modified Gurson law stated as 

$ = - ^ - + 2 / m c o s h ( - ^ ^ ) - ( l + / 2 ' " ) = 0 (A3) 
uf "f 

where m is a material constant between 2/3 and 1. Based on 
experimental data, Richmond and Smelser (1985) suggested 
m = (2 + N)/3 where N is the exponent for the power harden
ing law Of^k^)1*. In this paper, "Richmond material" refers 
to equation (A3) with m equal to 2/3. 

In all cases, the macroscopic material has an associated flow 
law given by 

Dfj=-7r^iJ7lkfik 
H 

(AA) 

where D is the macroscopic rate of deformation which is the 
volume average of d and E is the stress rate. The tensor i\ is 
such that 

3 E',7 

where 6\, is the Kronecker delta. His defined as 

H=h(u + -^-^) -3af(l-f)cty 

(A5) 

046) 

where h = daf/dtP is the hardening rate of the matrix material 
and 

E2 

For the Gurson and Tvergaard material 

1 - . - / E* 
af 

and 

E t 

-4*'-h(-Sr)-

y = q,c0Sh(-^)-q>f. 

047) 

(AS) 

(A9) 

For the Richmond material, equations 048) and (A9) for a 
and 7 should be replaced by 

a = — f m s i n h ( - ^ - ) (410) 

y = m(fm~\Cosh(~^-f2m-l\. (,411) 
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The rate of increase of the equivalent plastic strain in the 
matrix is chosen to ensure equivalency of the plastic work. 
This leads to 

e P = -

a-f>H 
(412) 

which is used to determine the value of h since it can be re
garded as a function of P. 

It is worth noting that the Kronecker delta in equation (A 5) 
ensures that the plastic dilatation of the material occurs by 
growth of holes only. Consequently, the rate of change of/is 
given by 

f=(\-f)iykk. {An) 
In these continuum models, any tendency for the voids to 
change shape is ignored and the constitutive laws remain 
isotropic. This is suitable for states of high triaxiality where 
rapid dilatation of the holes takes place. At lower triaxialities, 
such as in uniaxial stress, the shape change of the holes is im
portant, although ignored in the continuum models discussed 
in this Appendix. 

The laws described here for the Gurson, Tvergaard, and 
Richmond materials were integrated for the states of stress 
depicted in Fig. 1. The initial values of / and the matrix-
hardening laws were chosen to correspond to equivalent finite 
element calculations. The results are discussed in the text 
along with those of the finite element solutions. 

.Readers of_ 
The Journal of Applied Mechanics 
Will Be Interested Ins 
AMD-Vol. 95 

Recent Developments in Computational Fluid Dynamics 
Editors: T.E. Tezduyar, T.J.R. Hughes 

This book is a collection of papers on research and applications related to numerical methods in 
fluid dynamics. 

1988 Order No. G00455 216 pp. $60 List $30 ASME Members 

To order, write ASME Order Department, 22 Law Drive, Box 2300, Fairfield, NJ 07007-2300 
or call 1-800-THE-ASME (843-2763) or FAX 1-201-882-1717. 

Journal of Applied Mechanics JUNE 1989, Vol. 56/317 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Yong-Shin Lee 

Paul R. Dawson 
Assoc. Mem., ASME 

Sibley School of Mechanical and 
Aerospace Engineering, 

Cornell University, 
Ithaca, NY 14853 

Obtaining Residual Stresses in 
Metal Forming After Neglecting 
Elasticity on Loading 

A methodology for computing residual stresses in forming operations is examined 
in which the elasticity is neglected during the loading phase of the operation. The 
elastic response is recovered on unloading through the analysis of an initially-stressed 
body. Two examples are presented which provide a quantitative assessment of the 
accuracy of the approach. The first is the axisymmetric expansion of a thick-walled 
tube. In this case the residual stresses are compared to those computed with an 
elastic-plastic analysis for both the loading and unloading phases. The second ex
ample is a ring upsetting application that has been analyzed using a finite element 
formulation and for which there are experimental data available for comparison. 

Introduction 
Deformation processes, by their nature, typically induce sig

nificant inelastic strains to alter the workpiece geometry. This 
is particularly true in many bulk-forming operations, such as 
extrusion or rolling, where inelastic strains are large throughout 
the workpiece. In many other types of processes the zones 
within the workpiece where the strains are large are restricted 
to a few critical locations. However, it is these zones of large 
inelastic strains that accommodate most of the desired shape 
changes. For example, in sheet bending the strains are large 
where the changes in curvature are large, while in the rest of 
the workpiece the deformations remain small. 

Numerical techniques have assumed an important role in 
the analysis of forming operations because of their ability to 
deal with many complexities inherent to forming. Historically, 
the development of numerical models for deformation proc
esses has followed two paths. One is an extension of elastic-
plastic analyses of small strain applications where the defor
mations are a combination of elastic and inelastic strains, but 
the governing equations are amended for large strains (Hibbitt 
et al., 1970; McMeeking and Rice, 1975; Argyris and Kleiber, 
1977). The second approach is to assume that the inelastic 
behavior is dominant and to neglect the concurrent elastic 
response (Thompson et al., 1969; Kobayashi, 1977; Dawson, 
1978). This approach is motivated by the fact that where the 
shape changes are significant the magnitude of the inelastic 
strains far exceeds that of the elastic strains. Considerable 
computational advantages may stem from the simplifying as
sumption of neglecting the elastic response, but at the expense 
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of not capturing some (possibly important) aspects of the total 
response. For instance, thermal expansion of a workpiece due 
to heating during a forming process may alter the stress field 
and cause yielding to occur earlier (or later) than in a corre
sponding viscoplastic approximation. Residual stresses cannot 
be predicted unless elasticity is included at some stage in the 
simulation. 

In this article, we examine a specific method for computing 
residual stresses wherein the loading phase is strictly inelastic 
and the unloading is strictly elastic. Such an approach, if ac
curate, could give an estimate of the residual stresses due to 
forming without the computational expense of including elas
ticity throughout the simulation. This notion is not new in 
metal forming (Crandal and Dahl, 1959), and in fact was 
applied for the analysis of springback in several forming proc
esses (Zienkiewicz et al., 1978; Monfort and Bragard, 1985). 
However, as pointed out in the previously mentioned work 
(Zienkiewicz et al., 1978), its application has not been explored 
adequately in terms of quantitative comparisons to experiment 
or to solutions with both elastic and inelastic behaviors 
throughout the simulation. In the context of using finite ele
ment methods, obtaining sufficiently accurate residual stresses 
is complicated by the use of displacement based formulations 
for incompressible motions. In such formulations, the stresses 
are (usually) discontinuous derivative quantities of lower order. 
Special techniques often are required to evaluate them accu
rately. 

To help assess the accuracy of this approach we compare 
the residual stress state predicted using the strictly inelastic 
loading approximation to that obtained by analyzing the entire 
process with an elastic-plastic formulation. One set of com
parisons is given for the deformation of a thick-walled tube 
subjected to internal pressure. As a second example the residual 
elastic strains in an upset ring are computed with this ap
proximate approach and then are compared to those computed 
with a full elastic-plastic simulation and those measured ex
perimentally (Flower et al., 1987). The second example has 
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Table 1 Material parameters for the simplified Hart's model 
for annealed 304 stainless steel 

(s-1) 
1.36-1035 

/o 
(s-1) 

8.03.1026 

G 
(GPa) 

73.1 

(MPa) 

150.0 

6o 
(kcal/mole) 

98 

Go' 
(kcal/mole) 

21.7 

Co 

3.01-10"9 

7 

0.15 

M 

7.8 

m 

5.0 

n 

7.5 

m ' 

4.0 

been analyzed using a finite element formulation, and require
ments to obtain accurate stresses are addressed. 

Governing Equations 
The workpiece will be assumed to be isothermal and fully 

dense. Further, it is assumed that it is deforming slowly so 
that inertia may be neglected. For this case the balance of 
linear momentum (equilibrium) is written as: 

div a = 0 (1) 

where a is the Cauchy stress tensor and the body forces are 
neglected. 

The rate of deformation (d) at points within the body is 
defined as the symmetric portion of the velocity gradient (L): 

d = \ (L + \J). (2) 

In general, the material response may be written as a combi
nation of elastic and inelastic motions. In this work, the rate 
of deformation is decomposed into elastic and inelastic com
ponents: 

d = <*e + d„, (3) 
for which constitutive relations may be written separately. 
Hereafter, subscripts e and n indicate elastic and inelastic com
ponents, respectively. The forming processes discussed herein 
have been divided into two distinct phases: loading and un
loading. The loading phase is dominated by the inelastic de
formations, while during unloading the elasticity is assumed 
to dominate. In the simulations presented later, the complete 
response is approximated with the dominant mode of behavior 
so that the following relationships apply: 

d = dn during loading, and (4) 

d = de during unloading. (5) 
The elastic unloading behavior obeys a linear, isotropic re

lationship of the form: 

a = 2Gee + r,tr(ee)l. (6) 
Here, G and 77 are the Lame's constants, I is the identity tensor, 
and (e is a small strain measure that is linear in the displacement 
gradients and is measured from the configuration of the body 
just prior to unloading. 

The inelastic behavior is assumed to be isotropic and iso-
choric. The deviatoric response is described by a viscoplastic 
state variable model that consists of three parts. The first is 
the yield condition wherein the magnitude of the deviatoric 
stress necessary to induce inelastic straining is a function of 
the rate of deformation, the temperature, and the current state. 
The second part is the flow law which states that the direction 
of inelastic straining is in the direction of the deviatoric stress. 
Finally, the evolution equation defines the rate of change of 
the state variable in terms of the rate of inelastic deformation, 
temperature, and the current state. For our purpose here we 

consider only changes to the state variable caused by strain 
hardening, which can include both athermal hardening and 
dynamic recovery; static recovery is neglected. The use of iso
tropic state variable models with these features for forming 
simulations is discussed in detail in separate articles (Dewhurst 
and Dawson, 1984; Dawson, 1987; Eggert and Dawson, 1987). 

The specific model used in both applications presented later 
is a single transient version of Hart's model (Hart, 1976) that 
captures the change in flow stress with straining over large 
strains. In this version of Hart's model, the flow stress (yield 
condition) for a material point is the sum of two contributions: 

a ' = T'v + T'P< (7) 

where a' is the effective deviatoric Cauchy stress.1 A prime 
indicates a deviatoric quantity and superscripts v andp denote 
the viscous and plastic contributions, respectively. The viscous 
contribution is from the frictional resistance to dislocation 
glide along slip planes: 

' " - « " ( * ) " . - * - P ( ^ ) . m 
where d'n is the effective rate of deformation,2 R is the universal 
gas constant. The plastic contribution represents the resistance 
to inelastic flow as controlled by dislocation motion past strong 
barriers: 

*-*(S)"->G?)-
This resistance increases with straining due to an increase in 
the dislocation density since the dislocations themselves act as 
barriers to continued dislocation motion. The scalar state var
iable, a*, quantifies the barrier strength in an average (isotro
pic) sense. The contribution from the frictional mechanism is 
usually much smaller than that from the plastic mechanism 
except at high strain rates or low temperatures. The parameters 
a and d* depend on the temperature (0) and state variable as 
shown. The flow law is a Levy-Mises relation: 

d „ ' = — . ' . (10) 

The evolution equation for the state variable predicts a de
creasing rate of evolution as the state measure increases or the 
stress associated with dislocation motion past strong barriers 
(the plastic contribution) decreases. So long as deformation is 
occurring the evolution rate is never identically zero. However, 
the rate of change eventually does become very small. The 
evolution for the state variable is given by: 

D /G\m' /T'P\" 

S ( 0 - ^ ( ? ) ( ^ ) « , (ID 
where D/Dt denotes a material derivative. In equations (8) to 
(11). Go. Qo, #o> Co, n, M, m, 7, m', and/0 are material 
parameters which must be determined from experimental data. 
The initial value of the state variable, 0%, also must be known 
for the workpiece material. The above parameters have been 
evaluated for 304 stainless steel based primarily on stress re
laxation and constant deformation rate compression tests (Eg
gert and Dawson, 1987; Cook, 1957; McQueen et al., 1975; 
Kumar et al., 1979). The parameters used in the examples 
discussed herein are listed in Table 1. 

The formulation is completed with specification of the 

V = yji/1 tr (o'a')) 

2W = V2/3 tr (d„'d„')) 
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Fig. 1 Schematic diagram for the tube expansion application. U and t, 
are the velocity and the deformation rate at inside radius, respectively. 

boundary conditions and initial conditions. Over the surface 
of the body either known velocities or tractions are imposed 
throughout the deformation. At the time corresponding to the 
start of the process, the temperature and state everywhere 
within the body are specified. 

The methodology examined here for solving the system of 
equations consists of analyzing the loading phase of a defor
mation process with an inelastic (viscoplastic) approximation 
that neglects any contributions to the deformation from elas
ticity. Once the loading phase is completed, the body is un
loaded elastically using the final stress state from the loading 
phase as an initial condition for the unloading analysis. Because 
the loading and unloading phases are assumed to be dominated 
by the inelastic and elastic behaviors, respectively, and the 
inelastic deformations are rate dependent, the transition be
tween the phases must occur quickly. This requirement is more 
critical at high temperatures or low strain rates where signif
icant inelastic deformations continue following reductions in 
the level of stress. This point is discussed in more detail later. 

Applications 
Two applications are presented to illustrate the computation 

of residual stresses after simulating the loading phase using a 
purely inelastic analysis. The first is the expansion of a thick-
walled tube under an imposed internal pressure. Because of 
the relatively simple kinematics of this problem, numerical 
solutions, which include the elastic response during the loading 
phase, are easily computed using the equations outlined in the 
previous section and are similar to the well-known autofrettage 
solutions for the rate-independent plastic case (Calladine, 1969). 
Direct comparisons between the full elastic-viscoplastic and 
the viscoplastic models are possible for this case because the 
only difference between two analyses is the treatment of elas
ticity during loading. The second example is the deformation 
of a thick ring subjected to diametrically opposing forces. This 

2.5 

2.0 -

1.5 -
* o 
D 

°" '> 
1.0 -/ 

Elastic-viscoplastic 
0.5 - Purely viscoplastic 

r0/r, =2.0 0 /r,d, =1.0 

o.o I 1 i 1 ' 

0.0 2.0 4.0 6.0 8.0 10. 

U/r,(%) 

Fig. 2 Pressure as a function of inner wall displacement 

problem is analyzed with a three-dimensional viscoplastic for
mulation that has been modified to perform elastic unloading 
analyses. Experimental data of the residual elastic strains fol
lowing a fixed amount of upset are available for this appli
cation. 

Expansion of a Thick-Walled Tube. A thick-walled tube 
is expanded radially by an imposed velocity at the inside radius. 
As shown in Fig. 1, the tube has an inside radius of /•, and an 
outside radius of r0. The problem is one of plane strain and 
axisymmetry, with a one-dimensional flow field. For this case, 
assuming incompressible flow, the equilibrium equations re
duce to: 

^ r = °6- °r = 2 «£ ( 1 2 ) 

dr r r 
Here, or and ae are the stress components in the radial and 
circumferential directions, respectively. The deviatoric com
ponent of the circumferential stress was evaluated using a 
simplified version of Hart's model and integration of the equa
tion (12) was performed numerically. For an elastic-viscoplastic 
analysis, elasticity was included by imposing the consistency: 

a' = 2^d„' = 2Gee', (13) 

where e,,' is a deviatoric elastic strain tensor. A more general 
treatment for including elasticity is discussed in another article 
(Eggert and Dawson, 1988). 

Two different initial configurations were examined: /•„//•,• = 
2 and /•„//•,• = 10. The stresses computed by the elastic-visco
plastic and by the viscoplastic approximation have been com
pared throughout the loading phase. The internal pressure has 
been plotted in Fig. 2 as a function of the radial displacement 
(U) at the tube inside radius for the case of r0/rj = 2. Early 
in the deformation the two analyses are qualitatively different. 
In the elastic-viscoplastic analysis the internal pressure starts 
at zero and builds toward a level where inelastic deformations 
become significant. In the viscoplastic analysis the internal 
pressure immediately assumes a value that enables the stresses 
to satisfy the yield criterion everywhere. As the deformation 
increases and the inelastic deformations begin to dominate in 
the elastic-viscoplastic solution, the internal pressure computed 
by the two methods approach the same magnitude. 

The variation of stress with radius (Fig. 3) shows more vividly 
the difference between the solutions with and without elasticity 
during loading. A low stress levels (Fig. 3(a)), the material 
responds almost entirely by elastic straining in the elastic-vis
coplastic analysis. The circumferential stress decreases from 
the inside to outside radii. However, for a displacement having 
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Fig. 3(a) Stress as a function of radius for f„(r,) < 0.003 
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Fig. 4(a) Stress distribution at f„(r,) = 0.0025. Here, double prime de
notes residual stresses. 
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Fig. 3(6) Stress as a function of radius for 0.01 < eM < 0.1 

the same strain at the inside radius, the viscoplastic solution 
shows an increasing circumferential stress component. This is 
due to the deformations being entirely inelastic from the onset 
of loading with the viscoplastic approximation. The compli
ance offered by the elasticity which dominates at the onset of 
loading in the elastic-viscoplastic solution is neglected. As the 
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r0/r, =2.0 U /r, d, =1.0 

Fig. 4(b) Stress distribution at tM = 0.1. Here, double prime denotes 
residual stresses. 

deformation proceeds, more of the cross-section reaches the 
stress level at which significant inelastic straining occurs in the 
elastic-viscoplastic solution. The circumferential stress in
creases with the radius through the elastic-plastic zone nearer 

Journal of Applied Mechanics JUNE 1989, Vol. 56/321 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



^ 300. 

~T~ ~r ~r 
Devialion ol radial sltess al the innef radius 
Devialion of hoop stress al the outer radius 
Hardness by elastic-viscoptaslic at Ihe ouler radius 

— — Hardness by purely viscoplastic at the outer radius 
Hardness by elastic-viscoptaslic at the inner radius 

—_. _ Hardness by purely viscoplastic a! the inner radius 

- v r -

ro / r ,=2.0 

0 /r, d, =1.0 

i ~ 

100 

60 " l 
a 

a 
40 * „ 

0. 0.4 0.8 1.2 1.6 2.0 

U / r, (%) 

Fig. 5(a) State variable and stress error as a function of inner wall 
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Fig. 5(b) State variable and stress error as a function of inner wall 
displacement for a tube with initial rjr, = 10.0 

the inside radius and then decreases again after reaching the 
elastic zone nearer the outside radius. After the strain at the 
inside radius reaches approximately 0.003, the entire cross-
section exhibits inelastic straining and the stress patterns are 
comparable both qualitatively and quantitatively. The stress 
distributions corresponding to inside radius strains ranging 
from 0.01 to 0.10 are shown in Fig. 3(b). Here the entire body 
is experiencing inelastic deformations and the tube is visibly 
expanded. The stresses are increasing due to an increase in the 
flow stress associated with strain hardening. As is evident from 
the figure, the stresses obtained from the viscoplastic loading 
approximation are in good agreement with those computed 
from an elastic-viscoplastic model. 

The residual stresses obtained by unloading after reaching 
a prescribed amount of straining at the inside radius are shown 
in Fig. 4. In Fig. 4(c) the stresses just before and after unloading 
are plotted for the case where the ring is unloaded after reaching 
an inside radius strain of 0.0025. At this point material near 
the outside radius is still essentially elastic according to the 
elastic-viscoplastic solution. The residual stresses computed 
with the simplified viscoplastic loading simulation are least 
accurate in the region where the error was greatest before 
unloading. This is the region where the elastic strains were still 
dominant. However, over the remainder of the body the re
sidual stresses from the viscoplastic loading approximation are 
in qualitatively good agreement with the elastic-viscoplastic 
solution. At larger strains, the stresses before unloading as 
computed with the viscoplastic approximation are accurate 
throughout the region and, as a consequence, the residual 
stresses are captured well. This is shown in Fig. 4(b) for the 
case where the inside radius strain was 0.10 before unloading 
initiated. 

Table 2 Springback normalized with respect to the displace
ment during loading at the inner wall for the thick-walled tube 
(r0/rt = 2) 

errin) 

(percent) 

0.05 

0.1 

0.2 

0.25 

1.0 

10.0 

Viscoplastic 
Loading 

2.7616 

1.4270 

0.7527 

0.6159 

0.1874 

0.0300 

Elastic-Viscoplastic 
Loading 

1.0 

0.9492 

0.6693 

0.5677 

0.1806 

0.0298 

Error 
(percent) 

176.2 

50.34 

12.46 

8.49 

3.76 

0.67 

The stress error (normalized difference between the elastic-
viscoplastic stress and the viscoplastic approximation) is shown 
in Figs. 5(a) and (b) together with the predicted changes in 
state variable as a function of the inside radius displacement 
for both solutions. The error in the computed stress is large 
just as loading begins since the elastic-viscoplastic solution 
builds up from zero stress but the viscoplastic approximation 
starts at the stress required for inelastic straining. Evolution 
of the state variable occurs immediately for the viscoplastic 
approximation but is delayed for the elastic-viscoplastic case. 
It is evident from these figures that when the full cross-section 
becomes inelastic and hardening starts at the outside radius, 
the error in the stress becomes small. 

The displacements recovered during the elastic unloading 
phase can be interpreted as the elastic springback of the work-
piece. The displacements computed following an analysis using 
the viscoplastic loading approximation have been computed 
for various amounts of displacement at the inside radius during 
loading (see Table 2). When the strains are small err(/

-,) < 0.05 
percent) and the deformations are elastic throughout the cross-
section, the springback computed with the approximate method 
is seriously in error (176 percent). However, once the inside 
radius strain becomes larger, and most or all of the cross-
section exhibits inelastic deformations, the error decreases sub
stantially. After 1 percent of inside radius strain, the difference 
between computed values of springback at the inside radius is 
less than 4 percent; once the inside radius strain reaches 10 
percent, the error in springback displacement is less than 1 
percent. 

Similar results have been obtained for the case of /•„//•,• equal 
to 10. However, in this case because of the relatively larger 
outside radius, the inside radius displacement required to pro
duce inelastic deformations that extend throughout the cross-
section is larger. Again, when the outside radius begins to 
experience significant inelastic strains (as is apparent from the 
state variable beginning to change), the magnitude of the error 
in the computed stresses drops to less than 5 percent. Unloading 
from this point produces essentially equivalent residual stresses 
with both formulations. 

Compression of a Thick Ring. The second example is geo
metrically more complicated than the first example and pres
ently requires numerical methods to obtain solutions. A metal 
ring is loaded with diametrically opposing forces applied on 
small flat landings. These landings facilitated positioning in 
the experiment and act to distribute idealized point loads. The 
deformations of the ring were computed with the intention of 
comparing the computed residual strains to values measured 
experimentally for a ring of the same geometry and subjected 
to the same loading (Flower et al., 1987). For this purpose, a 
three-dimensional finite element program for viscoplastic flow, 
ISAIAH (Dewhurst and Dawson, 1985), was modified so that 
at the end of a loading sequence a body could be unloaded 
using an elastic analysis. 

This type of viscoplastic formulation for the loading phase 
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Fig. 6 Schematic diagram of the ring upset application. The ring is 
initially 13 mm thick, r, = 76 mm and r„ = 127 mm. 

is fully inelastic and has been used extensively for simulating 
large strain bulk-forming operations (Kobayashi, 1977; Zien-
kiewicz et al., 1981; Rebelo and Kobayashi, 1980; Li and Ko
bayashi, 1981; Dawson, 1984; Eggert and Dawson, 1986; 
Smelser et al., 1986; Beaudoin Woodbury, 1986; Surdon and 
Chenot, 1986; Thompson, 1986). The solution involves com
puting the velocity field for a fixed state (the geometry and 
the temperature and state distributions) and then advancing 
the state over a time step. The approximate solution for the 
velocity field is obtained from a finite element discretization 
based on a virtual rate of work statement3. 

8J = - ^T(a-5d)dV + \j-5udS, (14) 

where T is the surface traction, u is the velocity vector, V is 
the workpiece volume, and S is its surface in the current con
figuration. The yield condition and the flow rule are used to 
eliminate the deviatoric portion of the stress that appears in 
the first integral. The incompressibility constraint may be 
treated by various methods. For example, equation (10) may 
be modified to permit volumetric deformations in a viscous 
material using a relation of the form: 

a = 2/id + Xltr(d), (15) 

where n is the effective viscosity defined by the yield condition 
( = ff'/3^), which may be a function of the rate of defor
mation, state variables, and temperature. The material param
eter X is defined in terms of JJ, and Poisson's ratio, v, as: 

Incompressibility then is enforced by using v close to 0.5, while 
allowing compressible motions as legitimate modes. A value 
of v of 0.499995 has been used successfully such that X plays 
a role of penalty parameter. However, the use of this conven
tional penalty method can result in spurious pressure modes 
and, consequently, unreliable stress fields. To avoid such be
haviors, several techniques have been proposed (Zienkiewicz 
et al., 1971; Oden, 1982; Reddy, 1982; Engelman et al., 1982; 
Kheshi and Scriven, 1985; Dhatt and Hubert, 1986). It has 
been found that consistent penalty techniques give more ac
curate pressure and velocity fields with less computation time. 
The approach suggested by Engelman and co-workers uses a 
linear, discontinuous interpolation function for pressure to 
avoid spurious pressure modes with quadratic velocity ap-

3The Euler equations are equation (1) and the traction boundary conditions. 

proximation. With this approach, the stress in equation (14) 
is approximated as: 

a + p\ = 2nd1. (17) 

p = -Xtr(d). (18) 

Here, the pressure, p, is externally penalized. To increase the 
accuracy of the consistent penalty method, Kheshgi and Scriven 
(1985) have allowed the penalty parameter, X, to vary from 
element to element. This variable penalty parameter approach 
was effective for incompressible, linear viscous flow problems 
especially when the variations in element size were large. In 
the work presented here, a variable penalty parameter is used 
that is defined as a weighted average of the moduli evaluated 
at quadrature points with equation (16). Following standard 
finite element procedures, the resulting matrix equations from 
equations (14) and (18), respectively, then are: 

[KJiu] + [G]{-p] = [F\ (19) 

and 

[Mp] [p] = -A[GV{u] (20) 

where 
NQP 

A = £ h X Wl- (21> 
1 = 1 

Here, W, are the standard Gauss weights and NQP indicates 
the number of quadrature points per element. Detail expres
sions for [Kp], [G], [Mp], and {F) are available in other papers 
(Engelman et al., 1982; Dawson, 1984). The pressure can be 
eliminated at an element level, thereby reducing the problem 
to one involving only nodal point velocities. Thus, we obtain: 

[*•„ + Kx] [u] = {F} (22) 

where 

[Kx] = A[G][MP]-'[G] r. (23) 

Because the accuracy of the residual stresses is strongly influ
enced by the accuracy of the stresses computed at the end of 
the loading phase, predicting accurate pressures is a critical 
aspect in the successful use of this approximate approach for 
obtaining residual stresses. The additional effort of the con
sistent penalty technique was not only warranted, but was 
actually found to be necessary. 

The state of the workpiece is updated over a time increment. 
This consists of updating the geometry according to the velocity 
field and the state variable according to its evolution equation. 
The geometry advances merely by updating the mesh coor
dinates with an Euler integration of the nodal point velocities. 
The evolution equation for the change of the state variable 
with deformation is integrated with a combination of Galerkin 
weighted residual and Crank-Nicholson methods. The weighted 
residual for the evolution equation of the simplified Hart's 
model can be written as: 

(24) 

where N„* is the weighting function. After approximating the 
temporal derivative of the state variable with a finite difference 
expression and linearizing the remaining term in a*, a matrix 
equation for the state variable values at the end of a time step 
is obtained. Because terms in the coefficient matrix depend on 
the state variable, the equation is solved iteratively. This pro
cedure of finding a velocity field at fixed state and then up
dating the state over a time increment is repeated as often as 
necessary to accrue the imposed deformation of the forming 
operation. Details are available in other references (Dewhurst 
and Dawson, 1984; Dawson, 1987; Eggert and Dawson, 1987). 

The elastic unloading is analyzed with a finite element dis-
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Fig. 7 Finite element mesh for the ring upset application 

cretization of a virtual work formulation (Bathe, 1982) in which 
a matrix equation is obtained after eliminating the stress with 
the elasticity relationship (equation (6)) and writing the strains 
in terms of the displacements using kinematics for small strain 
deformations.4 Here, the deformation is only the change in 
shape between the start and the end of the unloading phase 
of the operation. Loads are applied which, by superposition, 
remove the boundary tractions on the surface. By noting that 
under small strain-small displacement kinematics the velocities 
of the viscoplastic formulation are analogous to displacements 
of the elasticity formulation, it is possible to use the same finite 
element program for both loading and unloading phases. The 
material moduli that appear as viscosities in the viscoplastic 
formulation are the Lame's constants for the elastic solution. 

During the loading phase, fixed velocities are imposed on 
the landings that compress the ring. The velocities were applied 
until approximately 2.5 percent upset was obtained. At that 
point the velocities were removed and an elastic unloading 
analysis was performed, as described previously. The finite 
element mesh for the symmetric upper quadrant is shown in 
Fig. 7. The material properties of 304 stainless steel were as
signed to the ring as specified in Table 1. 

The computed changes in state variable on a cross-section 
defined by a horizontal plane that cuts through the ring center 
(hereafter referred to as the east position) are shown first in 
Fig. 8(a). The distribution indicates that greater straining has 
occurred at the inside and outside radii than at an intermediate 
radius. This is expected as a plastic hinge develops during the 
deformation. Where the normalized state variable remains close 
to unity the inelastic deformations are small. Conversely, where 
the changes in the state variable are large the inelastic defor
mations are significant and the normalized state variable ex
ceeds unity. The stresses through the ring thickness at the east 
position also are shown in Fig. 8(a) at the instant prior to 
unloading. The distributions show that the tangential com
ponent of the stress is larger than the radial component. The 
tangential component is compressive at the inside radius and 
tensile at the outside radius, as expected from elementary curved 
beam theory. 

The residual elastic strains are shown in Figs. 9 and 10. The 
features of the distributions are dominated by the bending 

4While we have restricted our attention to small strain-small displacement 
unloading behavior, this part of the formulation could be generalized to large 
deformation (and rotation) kinematics as long as the small strain condition is 
preserved. 

_4 I i i i i I i i—i i—I—i—i—i—i—1—i—i—i—t—I _2. 
30.0 40.0 50.0 60.0 70.0 

Radial position (mm) 

Fig. 8(a) State variable and stresses at the east location before un
loading 
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Fig. 8(b) State variable and stresses at the north location before un
loading 

behavior and the formation of plastic hinges prior to unload
ing. The residual elastic strains (hereafter called just strains) 
at the east position are compared to measured values reported 
by Flower et al. (1987) and to values from a plane stress, elastic-
plastic simulation (Flower et al., 1987) using the finite element 
code NIKE2D (Hallquist, 1986) with a rate-independent model 
for plasticity (both for loading and unloading) in Fig. 9. The 
tangential component of the strain is larger than the radial (the 
latter being a consequence principally of the Poisson effect). 
The predicted distribution of the tangential component com
pares well both in form and magnitude to the data and to the 
elastic-plastic simulation. The experimental data has been 
measured for two crystal directions, one of which, the (0,0,2) 
direction, consistently shows greater strains. As pointed out 
by Flower et al., this direction is more compliant than the 
other. In the simulations, average (macroscopic) values of the 
elastic moduli have been used, with the result being that the 
computed strains lie between the two sets of experimental data. 
The discrepancy between the two simulations is not large, but 
might be reduced further with greater resolution in our sim
ulations. The difference between computed and measured 
strains, as well as the scatter of the data itself, appears to be 
larger for the radial component, but this is due principally to 
the smaller overall magnitudes associated with this component. 
Again, the form of the distribution is consistent with unloading 
from a plastic hinge distribution. Both the ISAIAH results 
reported here and the NIKE2D results reported earlier by Flower 
et al. appear to show larger residual strains at the inside di
ameter than is apparent from the experimental data. Flower 
et al. address this point, but do not reach a conclusion regarding 

R R : Radial stress 
T T : Tangential stress 

: Hardness 
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Fig. 9(a) Residual tangential strains at the east location 
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Fig. 9(b) Residual radial strains at the east location 

the source of the discrepancy. Beyond their discussion the 
following point is relevant: The isotropic hardening plasticity 
model used in these calculations overpredicts the initial flow 
stress on reloading (using a microstrain definition). Since the 
inside radius is the farthest point from the neutral axis of 
bending, the stress there will be the highest and that point 
would be the first point to yield on reverse loading. In reality, 
a very small amount of plasticity diminishes the stress at the 
inside radius. In this respect, one expects that the computa
tional and experimental results will differ the most at this point. 

Similar results for the stresses (Fig. 8(b)) and the strains (Fig. 
10) as functions of radial position were obtained for a cross-
section revealed by passing a vertical plane through the ring 
center (hereafter called the north location). Again, the tan
gential component of the strain after unloading is larger than 
the radial component, the latter being essentially a Poisson 
effect. The sense of the strains is opposite to that of the east 
location because the moment induced by the loading is opposite 
in sign to that at the east location. Comparing the two com
puted distributions it is evident that the NIKE2D simulations 
predict a sharper transition from tension to compression across 
the neutral axis, but otherwise are very similar. 

As with the first example, the displacements of the elastic 
unloading give the springback. For this example, the spring-
back computed at the landing was approximately 0.24 mm, or 
about 15 percent of the displacement during loading. No values 
are available for comparison of this prediction, however. 

Discussion 
Based on the experiences obtained in examining the two 
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Fig. 10(b) Residual radial strains at the north location 

previous examples, a few statements can be made regarding 
the accuracy of estimating residual stresses using a viscoplastic 
analysis for loading. These statements are made in the context 
of modeling deformation response in materials processing 
where the objective is to alter the workpiece geometry, rather 
than for design applications involving, at most, limited de
formations of a part. The statements are not meant to be 
completely general since the experience in applying the tech
nique is limited and a formal proof of accuracy has not been 
derived. 

It appears reasonable to expect accurate computation of 
residual stresses in cases where the stresses are well known 
prior to unloading. Strictly, this should be true everywhere in 
the workpiece, but actually may not be required. Where the 
deformations are large the magnitude of the stresses is limited 
by the yield condition and probably is sufficiently well known 
from the viscoplastic loading approximation. One measure of 
the degree of plastic deformation is the change in the state 
variable that characterizes the change in flow stress with strain
ing. If the state variable is evolving everywhere, then the stresses 
are limited by the yield condition for the inelastic deformations. 
However, since with a viscoplastic approximation all of the 
deformation is inelastic, that portion of the deformation that 
occurs without a state change is neglected. The change in state 
thus can be overestimated and the fact that the state has changed 
in a viscoplastic simulation does not imply that any change 
would have taken place in an elastic-plastic simulation of the 
same process. This is evident from the first example. It is 
possible, however, to estimate the maximum change in state 
that would be observed in a viscoplastic simulation for de
formations of the magnitude of the elastic deformations at 
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yield. For example, over a monotonic path in strain space, the 
maximum change in the state variable (cr*) for an effective 
strain of 0.2 percent is around 27 percent of the initial value 
of the state variable. When the changes in state exceed this 
value the magnitude of the deformation is sufficiently large to 
ensure inelastic deformation (and stresses limited by the yield 
criterion) in an elastic-plastic simulation. This approach is, in 
essence, just an examination of the magnitude of the state 
variables beyond which the inelastic deformations really are 
the dominant mode of deformation during loading. The basic 
requirement for accurate results using a viscoplastic formu
lation is that the inelastic deformation rate is considerably 
larger than the elastic deformation rate. This usually isn't true 
as the body is loaded up to the yield stresses, but often can 
be the case for the deformations once the loads are sufficiently 
high to induce inelastic deformations. Thus a minimum re
quirement for accurate residual stress predictions is that the 
deformations extend past the initial loading phase where the 
deformation can be accommodated by the elasticity and where 
the elastic deformation rate may be comparable to, or larger 
than, the inelastic deformation rate. The examples presented 
here suggest that once the conditions for accurate simulations 
using a viscoplastic loading approximation are met, the residual 
stress predictions using the decoupled approach will in turn be 
accurate. 

A second point that is important in the computation of 
residual stresses by the technique presented here is that during 
unloading the elasticity must dominate. This places a restriction 
on the time frame over which the unloading must occur. Re
ferring to equation (3), the elastic contribution must be large 
compared to the inelastic one. By substituting constitutive re
lations for the elastic and inelastic deformation rates it can be 
shown that for rate-dependent plasticity the unloading time 
must be small in comparison to the effective relaxation time 
of the material. If this condition is not satisfied there could 
be continued inelastic straining during unloading that could 
relax the stresses in comparison to the purely elastic case. In 
the rate-insensitive (or rate-independent) regime, relaxation 
time is long (or infinite) so that this condition is easily satisfied. 
In the rate-sensitive regime (e.g., high temperatures), this con
dition will be more restrictive. For both examples presented 
here the unloading phase was assumed to occur instanta
neously, so that this condition was satisfied. 

Enforcement of the incompressibility constraint in the finite 
element formulation requires special attention. A standard 
penalty approach gave pressures that were too noisy to define 
the initial stress state satisfactorily for unloading. That is, using 
only the penalty method the form of the residual strain dis
tribution was masked by large fluctuations coming from the 
mean component of the stress. Using a consistent penalty 
method, which is somewhat more costly, the pressures were 
smoother and more accurate. Consequently, the residual 
stresses demonstrated the correct distribution. 

Summary 
Two applications have been presented that demonstrate a 

technique for computing residual stresses subsequent to form
ing processes using a viscoplastic approximation for the loading 
phase. It was observed in the thick-walled tube example that 
residual stresses were obtained only after the deformations 
were sufficiently large to induce inelastic strains throughout 
the cross-section. In the thick ring application the degree of 
upset was adequate to form a plastic hinge during loading. 
The stresses throughout the cross-section thus were limited by 
the yield criterion and a viscoplastic approximation was able 
to capture them well. As a consequence the residual elastic 
strains compared well to experimental measurements and to 
the results of an elastic-plastic simulation. We suggest that the 
key element to predicting residual stresses accurately by this 

approach is the accurate calculation of the stresses prior to 
unloading. Physically, this means that the stresses should be 
limited by the flow stress (inelastic deformations are occur
ring); numerically, special care must be exercised to obtain 
accurate pressures in the finite element discretization of the 
viscoplastic formulation for the loading phase. The criteria for 
viscoplastic approximations to be accurate are that the inelastic 
deformation rate dominates and the strains are well in excess 
of the elastic strains that would exist in the workpiece. 
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Axisymmetric Elastic Deformations 
of a Finite Circular Cylinder With 
Application to Low Temperature 
Strains and Stresses in Solder 
Joints 
We consider an axially symmetric elastic problem for a finite circular cylinder whose 
end planes are subjected to identical radial deformations. The obtained solution is 
used to evaluate low temperature strains and stresses for solder joints in assemblies 
having matched thermal expansion coefficients of the components. The ther-
momechanical behavior of solder joints is determined in this case by the mismatch 
between the solder and the soldered materials. It is shown that the arising strains and 
stresses, especially in the axial direction, can be rather great and could possibly 
result in the failure of the joint. They can be brought down by increasing its height-
to-diameter ratio. The stresses can also be reduced if low modulus solder materials, 
such as 95 percent Pb/5 percent Sn solders or indium-based alloys, are used. 

1 Introduction 
In this analysis we consider an axially symmetric elastic 

problem for a circular cylinder with small height-to-diameter 
ratio. The end planes of the cylinder are subjected to identical 
radial displacements, and remain flat during deformation. 
The obtained solution is used to evaluate low temperature 
mechanical behavior of solder joints in assemblies with 
thermally-matched components. In this case the arising strains 
and stresses are due to the thermal expansion (contraction) 
mismatch between the solder and the soldered materials. The 
major objective of our study is to assess the role of the main 
factors affecting the magnitude and the distribution of strains 
and stresses. In particular, we intend to determine whether an 
increase in the height-to-diameter ratio can result in essential 
reduction in the strain/stress level. 

Structural response of solder joints in surface-mounted 
assemblies was studied experimentally and on the basis of 
finite element technique by many investigators (Engelmaier, 
1983, 1988; Lau and Rice, 1985; Hall and Sherry, 1986; and 
others). The problem of finite solid cylinders with given end 
displacements was addressed by Swan (1986) and Bentham 
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and Minderhaud (1972). Thermomechanical strains in solder 
joints with consideration of their expansion (contraction) 
mismatch at the package and substrate interfaces were ad
dressed by Clech (1987) on the basis of the finite element 
method, and by Robert (1987) who utilized an eigenfunction 
expansion technique. 

2 Analysis 

2.1 Assumptions. The following basic assumptions are 
used in our study: 

8 The thermomechanical strains and stresses can be 
evaluated on the basis of an elastic approach. 

* The free contraction of the soldered materials is not af
fected by the interfacial stresses and, therefore, the maximum 
radial displacements are given ("prescribed") values, which 
can be determined by the formula (Fig. 1): 

"max = "(«.±-y-)=AaAta. (1) 

Here u(r, z) are radial displacements, a is the radius of the 
cylinder, h is its height, Aa = a s - ap is the difference between 
the coefficients of thermal expansion of the solder and the 
soldered materials, and At is the change in temperature. The 
origin O of the cylindrical coordinates r, z is in the middle of 
the cylinder of its axis. 

8 Not only the in-plane, but also the flexural rigidity of the 
soldered components is so great, that the end planes of the 
cylinder remain flat during its deformation, so that the follow-
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Fig. 1 Circular cylinder clamped at its end planes 

ing boundary condition for the axial displacement w(r, z) 
takes place: 

dw 

~dV 
= 0 for z±—. (2) 

• Since the height-to-diameter ratio of the cylinder is small, 
the displacements in the cylinder are strongly affected by the 
boundary conditions at both the end planes, and can be sought 
in the form: 

u(r,z) = -f(r)cosyz + Ar, w(r,z) = <j>(r)smyz + Bz, (3) 

where, in order to satisfy the condition (2), the parameter y is 
chosen as follows: 

2?r 
7 = " (4) 

Note that if the height-to-diameter ratio is not small, the 
trigonometric functions in (3) would have to be replaced by an 
exponential function, to account for the fact that in such a 
case the displacements should fade with an increase in the 
distance from the end planes. Elastic deformations in 
cylinders with large height-to-diameter ratios were examined 
in numerous publications (see, for instance, Filon, 1902; 
Love, 1944; Timoshenko and Goodier, 1970). 

2.2 Approximate Solution to the Elastic Problem. With 
the formulas (3) we have the following equations for the 
strains: 

du 
er = = —/' (r)cosyz+A, 

cosyz+A, 

dr 

u _ f(r) 

r r 

dw 

dz 
- = y<j>(r)cosyz + B, 

du dw 
- + —-=:[yf(r)+(t>'(r)]smyz 

r- (5) 

dz dr 
- _• 

We use the Hooke's law equations in the form (see, for in
stance, Love, 1944): 

ar = \d + 2Gtr ,at=\e + 2Gi„az = \e + 2Gez, rrz = Gyrz, (6) 

where 

e = er + e, + ez (7) 

is the strain invariant, 

Ev 
X = - -2G- ,G--

E 
(8) 

(1 + J-)(1-2J<) 1 - 2 V 2(1 + 1-) 

are the Lam6 constants, E is Young's modulus and v is 
Poisson's ratio. In the above relationships er, e, and ez are 
linear strains in the radial, tangential (circumferential), and 
axial directions, respectively, ar, a,, and az are normal stresses 
in these directions, and yn and j r z are shearing strain and 
stress. Introducing (5) into (6) we obtain: 

ar = -[(\ + 2G)f'(r)+\-f(r) 
-y\<t>(r)]cosyz 

L v 
+ A| + B 

v 
a, = - [ (X/ ' ( r ) + (X + 2G) 

Ar) 
- y\(f> (r)]cosyz 

+ X [•f«] 
- [(X/ ' (r)+X 

Ar) 
-y(\ + 2G)(t>{r)]cosyz 

(9) 

+ x[x4+i—-B\ 

rrz = G[yAr)+<t>'(r)]sinyz 

Substitution of these expressions into the equations of 
equilibrium 

da. dr„ or — o, 3 da, 
^ + ^ + ^ 1 = 0 ) {rrrz)+r—± = 0 
dr dz r dr dz 

(10) 

results in the following system of ordinary linear differential 
equations for the unknown functions /(/•) and </>(/•): 

(X + 2G)[/" (/•) + / ^ - ^ l ] -y*GAr) 

- 7 X ( X + G ) 0 ' ( r ) = O 

/ ( / • ) • T Ar)l T <l>'(r)l 

7(X + G) [/' (r) + ̂ - J + G[«" (r) + -^ -^J 

(11) 

-y2(\ + 2G)4>(r)=0 

The equations (11) have the following solutions: 

Ar)=C0rI0(yr) + C1aIl(yr), 4>(r) =D0aI0(yr) + DlrIltor), 

(12) 

where I0 (x) and Ix (x) are modified Bessel functions of the 
first kind of zero and first order, respectively. These functions 
obey the following rules of differentiation (see, for instance, 
Watson, 1952; Sneddon, 1956; or Spanier and Oldham, 1987): 

lo (yr) = yli (yr), I{(yr) = yl0{yr) - Ii(yr) 
(13) 

The relationships between the constants of integration in (12) 
can be obtained by introducing these formulas, with con
sideration of (13) in (11): 

_ 4(1 - v) 
DQ— C0 + Cj, Dl—C0. 

Here 

£ = ya = 2ir-
h 

(14) 

(15) 

is the parameter of the radius-to-height ratio. 
The constants A, B, C0 and Cx can be determined on the 

basis of the condition (1) for the maximum radial 
displacements, the condition 
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So f f<( r ,±4)*=o (16) 
30 

of self-equilibrium for the interfacial axial stress, and the 
stress-free boundary condition 

ar(a, z) = 0 (17) 

for the radial stress. Note, that a similar condition for the 
shearing stress is not fulfilled in our analysis. This is supposed 
to result in a reasonable overestimation of the maximum 
shearing stress. A similar approach has been taken in the 
analyses of adhesively-bonded joints (see, for instance, 
Goland and Reissner, 1944), and in some engineering theories 
of thermally-induced stresses in bimaterial assemblies (Chen 
and Nelson, 1979, Suhir, 1986). 

After introducing the formula for the displacement u(r,z) 
from (3), and the formula for the function/(/•) from (12) into 
the condition (1), we have 

A=AaAt-C0I0^)-CiIi^). (18) 

Substitution of (12) into the formula for the axial stress in (9) 
yields: 

az(r,±-^ = -2G{[2(2-i.)Co + €C1]/0(7r) 

+ C 0 7 r W ) ) A. 
v 

Then the condition (16) results in the equation: 

[2(2 - V)S0 + 25, ]C0 + HSoCt = - i i i U , 

(19) 

(20) 

where 

So = \jo(yr)dr = —\ I0{x)dx, (21) 
a Jo J- Jo 

= — \'rll(yr)dr = — [ / „ « ) - S 0 ( f ) ] . 
a Jo 7 

The latter formula was obtained on the basis of integration by 
parts. Using (22) we rewrite (20) as follows: 

[(3-2i.)So($)+/o(«)]Co + *So<*)Ci = 
l + v 

(23) 

The condition (17), the expression for the radial stress in (9), 
and the solutions (12) result in the following equations for the 
constants A, B, C0 and C,: 

A + uB = Q, (24) 

[ ( l -2 i - ) /0 ( { ) + {/1(f)]Co + K / o ( f ) - / , m ] C 1 = 0 . (25) 

From (23) and (25), we obtain the formulas for the con
stants C0 and C, in the form: 

where 

Xo(f) = 

X i ( f ) = 

c0 = xo«M, c,=x,(SM, 

1 + * $/0($)-/,«) 
v D(H) 

l + v ( l -2y)Z D ( t ) + t / i (6 ) 

v D(£) 

(26) 

(27) 

and 

D(Z) = [ 2 ? / 0 ( ? ) - ( 3 - 2 y + ?2)/1(?)]S0(?) 

+ / o ( f ) K / o ( € ) - ^ i « ) ] (28) 

is the determinant of the system of equations (23) and (25). 

20 

10 
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So 
1.0000 
1.0318 
1.0983 
1.2177 
1.4041 
1.6803 
2.0812 
2.6595 
3.4946 
4.7053 
6.4858 
9.0748 
12.899 
18.580 
27.070 
39.825 
59.080 
88.275 
132.73 
200.65 
304.84 

V/ 

/ / i - l 

S o ^ / 

1.0 2.0 3.0 4.0 5.0 

X 
Fig. 2 

Introducing (26) into (18), we obtain the formula for the 
constant A in the form: 

A=A(Z)Aa&t, (29) 

where 

(22) ^ « ) = [ l + X o ( S ) / o « ) + X i ( f ) / i « ) ] -

r 1 + , 2(l-y)/0(g)/1(g)/1a)-g[/0
2q)-/1

2(£)]-|-' 

(30) 

After the constant A is found, the B value can be determined 
from (24). 

This concludes the solution to the elastic problem. We 
would like to emphasize that this solution is intended to be 
used primarily for the purpose of evaluation of the interfacial 
stresses. The modified Bessel functions entering the above for
mulas can be taken from the tables given in handbooks on 
special functions (see references). The functions I0(x), / , (x) 
and S0 (x) are plotted in Fig. 2. 

The function S0 (x) can be evaluated either numerically or 
on the basis of one of the following formulas (Gradshteyn and 
Ryzhik, 1980): 

s . w = — E (-i)m/2*+i(*). 
• * MI — n 

S0(x) = /„(*)- -[I1(x)L0(x)~I0(x)L1(x)]. (31) 

In the latter formula, Ln (x) is the modified Struve function of 
the order n, defined by the expansion 

Ln(x)= £ (•f): 

-r(-+-L)r(4-) 
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VTT 
1+-

( T T 

^ 

(3)(5)(2II + 3)(2B + 5) 

3(2n + 3) 

•]• (32) 

For large x values the following asymptotic formulas can be 
obtained 

2 2 
L0(x)=IQ(x) , L|Ms/,(jt) , 

•KX IT 

S0(x) = h(x) x>25. (33) 

2.3 Strains and Stresses. The formulas for the maximum 
strains can be obtained from the equations (5), (12), (14), and 
(26), and are as follows: 

er = ^ [ l + k o ( f ) + fxi«)I/o(7' ') 

+ [xo«)7'-Xi(€)-yW)] 

e, = ^ [ l+ [xo( f ) /o (7 ' , ) + X i « ) - y / i ( 7 ' - ) ] ] 

ez = - / l ( - ^ + [ ( 4 ( l - y ) x o ( ? ) + ? X 1 ( ? ) ) / o ( 7 ' - ) 

+ Xo(*)7',/l(7'-)]] 

T r , = 2A[Xo(ii)yrI0(yr) + [2(l-p)x0(!i) 

(34) 

The factor A in these formulas is expressed by the equation 
(29). The maximum linear strains take place in the end planes, 
while the maximum shearing strains occur in the cross-sections 
located at the distances of one-quarter of the cylinder's height. 

The strain invariant, expressed by the formula (7), can be 
presented for the interfacial strains as follows: 

6 = - (1 - 2v)A [ - i - + 2Xo (f )/0(7r)] . (35) 

Then the equations (6) result in the following formulas for the 
normal stresses, acting in the end planes: 

o> = 2G,4[[(l-2*)xo«) + Sx i ( * ) ]W) 

+ L(£)7'--X,(S)—l/,(7r) 
r y € i 

a, = 2G.4 ( l-2i-)xo(«)/o(7'-)-7i«)—W) L ! 7r J 
a, = -2GA 1+ +[2(2-£v)x0(€) + 5xi(l)J/o(7'-) 

' ) 
+ Xo(£)7''A(7'')j 

(36) 

The shearing stresses in the z= ±h/2 cross-sections are as 
follows: 
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Trz = 2G,4 (xo (€ )yrl0(yr) + [2(1 - . ) X o (£) + £x, (*)]/, (yr)} • 

(37) 

Note, that for the points close to the cylinder axis (small yr 
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Table 1 

r/a 

er/AaAt 
e,/AaAt 
tz/AaAt 
yrz/AaAt 
or/EAaAt 
0,/EAaAt 
oz/EAaAt 
Trz/EAaAt 

er/AaAt 
6,/AaAt 
ez/AaAt 

yrz/AaAt 
or/EAaAt 
0,/EAaAt 
oz/EAaAt 
Trz/EAaAt 

er/AaAt 
e/AaAt 
ez/AaAt 
yrz/AaAt 
or/EAaAt 
0,/EAaAt 
oz/EAaAt 
Trz/EAaAt 

0 

2.377 
2.377 

-4.402 
0 
2.048 
2.048 

-3.047 
0 

0.927 
0.927 

-2.168 
0 
0.460 
0.460 

-1.861 
0 

0.420 
0.420 

-1.226 
0 
0.0269 
0.0269 

-1.208 
0 

0.2 

2.345 
2.367 

-4.252 
2.034 
2.104 
2.121 

-2.844 
0.763 

1.005 
0.992 

-2.268 
1.225 
0.551 
0.542 

-1.904 
0.459 

0.464 
0.434 

-1.277 
0.169 
0.0645 
0.0417 

-1.242 
0.0634 

0.5 

k-
1.930 
2.268 

-3.090 
3.271 
2.279 
2.532 

-1.486 
1.227 

z--
1.968 
1.269 

-3.036 
6.624 
1.626 
0.801 

-2.127 
2.484 

i = 
1.053 
0.570 

-1.884 
1.556 
0.594 
0.232 

-1.609 
0.583 

0.7 

= 3.0 

0.818 
2.038 

-0.815 
2.147 
2.145 
3.060 

-0.920 
0.805 

= 6.0 

2.499 
1.569 

-2.735 
6.121 
2.874 
2.176 

-1.052 
2.295 

:10.0 

2.709 
0.908 

-3.240 
5.575 
2.315 
0.964 

-2.147 
2.091 

0.9 

-2.114 
1.490 
4.296 

-2.628 
1.168 
3.871 
5.975 

-0.985 

-0.824 
1.561 
3.978 
1.695 
2.917 
4.706 
6.519 
0.636 

2.267 
1.456 
1.035 
7.786 
5.268 
4.660 
4.345 
2.920 

0.95 

-3.365 
1.271 
6.334 

-4.828 
0.658 
4.134 
7.931 

-1.811 

-3.757 
1.367 
8.716 

-3.298 
1.927 
5.770 

11.281 
-1.237 

-2.085 
1.401 
8.544 
0.839 
4.332 
6.947 

12.304 
0.315 

1.0 

-4.885 
1.000 
8.769 

-7.598 
0 
4.413 

10.240 
-2.849 

-8.444 
1.000 

15.892 
-11.770 

0 
7.083 

18.252 
-4.414 

- 12.490 
1.000 

24.353 
-17.469 

0 
10.406 
27.921 

-6.551 

= radial strain and stress 
= tangential (circumferential) strain and stress 
= axial strain and stress 
= shear strain and stresses 

values) the ratio / , (yr)/yr in the aforementioned formulas is 
equal to 0.5. 

2.4 Calculated Data. The results of the computations 
performed for the cases £ = 3, 6, and 10 (d/h = 0.995, 1.910, 
3.183), with v= 1/3, are shown in Table 1. The distributions of 
stresses and strains along the radius are plotted in Fig. 3 for 
the case £ = 6. The maximum strains and stresses occurring in 
the interfaces (in the case of linear strains and normal 
stresses), and in the cross-section z= ±h/4 (in the case of 
shearing strains and stresses), are plotted in Fig. 4 versus £ 
values. 

2.5 Numerical Example. The numerical example is car
ried out for a 5 percent Sn/95 percent Pb solder joint intercon
nection (£ = 0 . 2 x l 0 6 k g / c m 2 s 2 . 8 4 x l 0 6 psi, 1/3, 
a = 28xl0~ 6°C) between a silicon chip and a silicon substrate 
( a s 3 . 0 x 10-6°C). The soldering temperature is 320°C. The 
calculations are performed for the temperature -50°C, so 
that AaAr = 0.00925, and £AaAr=1850 kg/cm2 (26270 psi). 
The joint's height is h = 60 ^m and its diameter is d = 115 /j.m. 
Hence, £ = wd/h = 6. The distributions of the strains and 
stresses along the radius coincide with those shown in Table 1 
for the case J = 6 (see also Fig. 4). 

The calculated stresses are very high, and, if the strains were 
not restricted (obviously, as long as the "generating" radial 
strains in the end planes cannot exceed AaAr, all the resulting 
strains are always finite, though can be, of course, 
very large) would inevitably result in an ultimate failure of the 
joint. The maximum linear strains occurring on the contours 
of the interfaces, are tensile and directed upwards. In accord
ance with the Table 1 data, these strains are 15.892 
x 0.00925 = 0.147 = 14.7 percent. The ultimate elongations e„ 
for the solder in question vary from 30 to 60 percent and, 
therefore, the margin of safety in this case is at least about 

two. The ultimate shearing strain can be assessed by the 
formula 

_ 2(1 + v) 

With the e„ value varying in the above range, we have 
7„ = 40—93 percent, for c = l / 3 . The maximum shearing 
strain for the solder joint in question is -11.77 
X0.00925 = 0.1089=-10.9 percent, i.e., essentially smaller 
than the ultimate strain. From the standpoint of the fatigue 
strength, however, the calculated strain level could turn out 
too high. If the aspect ratio of the solder joint is reduced by 
the factor of two, then the maximum axial strain becomes 
about 8.1 percent, which is supposed to result in a significantly 
greater fatigue life. If, for instance, the Manson-Coffin for
mula (as modified by W. Englemaier, 1983) is used to evaluate 
the number of cycles till failure, then the expected increase in 
the fatigue life, because of smaller maximum strains, can be 
assessed by the formula: 

^ 2 

- ( • f ) " -TV, V € 2 

where the calculated value of the exponent m is between 2.5 
and 3.0 (Englemaier, 1983). Then the twofold reduction in the 
maximum strain will result in about 5.7 — 8.0 times longer 
fatigue life of the interconnection. 

3 Conclusions 

The following major conclusions can be drawn from the 
above analysis: 

9 All the calculated strains and stresses are the greatest 
either on the lateral surface itself or in the vicinity of this 
surface. Hence, it is the peripheral part of the joint, 

332/Vol. 56, JUNE 1989 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



which is primarily responsible for its mechanical 
performance. 

9 The maximum linear strains and the maximum normal 
stresses occur in the interfaces, while the maximum shear
ing strains and stresses take place in the cross-sections 
located at one-quarter of the joint's height. 

9 The maximum strains act in the axial direction and con
centrate near the lateral surface, then follow the radial 
and the shearing strains. These are also the greatest at the 
lateral surface. The tangential (circumferential) strains 
are relatively small. 

9 The maximum stresses also act in the axial direction and 
concentrate at the lateral surface. These stresses are 
significantly greater than all the other stress categories. 
When the coefficient of thermal expansion of the 
soldered materials is smaller than the coefficient of ther
mal expansion of the solder, then the low temperature ax
ial stresses at the lateral surface are tensile. This could 
possibly result in an ultimate failure or in the crack initia
tion during thermal cycling. The adverse effect of the 
concentrated axial stresses is aggravated in such a case by 
tensile tangential stresses, which, unlike tangential 
strains, are rather great, and, in combination with signifi
cant axial stresses, result in a three-dimensional stress 
condition. This could lead to fracture initiation in the 
"corners" of the joint, especially at low temperatures, 
when materials are more prone to fracture formation. 
The radial and shearing stresses are essentially smaller 
than the stresses of the first two categories. 

9 The diameter-to-height ratio is the only geometrical 
parameter, affecting the strains and stresses. Therefore, 
joints with identical diameter-to-height ratios are ex
pected to experience the same strains and stresses, as long 
as they are manufactured of the same material and are 
subjected to the same external thermal mismatch strain 
AaAf. 

9 In the range of diameter-to-height ratios of practical in
terest (d/h = 0.5 — 3.0), the strains and stresses essentially 
increase with an increase in these ratios. As a "rule of 
thumb," one may assume that the strains and stresses are 
approximately proportional to the diameter-to-height 
ratio. When the diameter-to-height ratio decreases, for 
instance, from two (solder joints of this aspect ratio were 
employed in the advanced packaging technology de
scribed by Bartlett et al., 1987) to unity, then the strains 
and stresses decrease by about two times (Fig. 4). Such a 
reduction in the diameter-to-height ratio, can increase the 
fatigue life of a solder joint interconnection by about 6 to 
8 times. 

9 Materials with smaller Young's moduli experience smaller 
stresses. From this standpoint a 5 percent Sn/95 percent 
Pb solder, whose Young's modulus is about 4.6 times 
smaller than that of a 60 percent Sn/40 percent Pb solder, 
is expected to result in smaller stresses at low temperature 
conditions, even despite the fact that its melting point is 

higher. Indium and some indium-based alloys seem to be 
even more attractive in this respect. 

Note that the above conclusions, at least those concerning 
strains, seem to be true not only for elastic, but also for 
elastoplastic deformations, both at low and elevated 
temperatures. 
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End Effects and Time-Harmonic 
Longitudinal Wave Propagation in 
a Semi-Infinite Solid Cylinder 
Axisymmetric end problems of longitudinal wave propagation are studied in a semi-
infinite isotropic solid circular cylinder which is free of traction on its cylindrical 
surface. An accurate and computationally efficient method of solution is presented 
which can exploit the asymptotic behavior for high harmonics in the radial direc
tion. The stresses and displacements are expanded in terms of the eigenfunctions of 
the case of a lubricated-rigid cylindrical surface condition. The expansions are used 
to construct a stiffness matrix relating the harmonics of stress and displacement for 
the traction-free case, which is shown to approach asymptotically that of the case of 
the mixed condition. Unlike other approaches such as finite element or boundary in
tegral methods, which typically require the solution of large systems of equations for 
rapidly varying end conditions, the present formulation can lead to a coupled system 
of equations for lower spatial harmonics and a weakly coupled system for higher 
spatial harmonics. Due to the small number of equations in the coupled system, the 
present approach is very effective in handling general boundary conditions, and is 
particularly efficient for end conditions with rapid spatial variation. 

1 Introduction 

The study of wave propagation in a solid cylinder has many 
applications, such as nondestructive evaluation of material 
properties, flaw detection, and the determination of 
resonances. The analgous problem is that of a fluid contained 
in a cylindrical vessel. A motivation for the present work was 
the extension of the analysis of the cochlear model calculation 
procedure of Miller (1985). Another motivation was the need 
for an efficient dynamic analysis of the cylindrical stem of a 
hemispherical resonator gyroscope (see Loper and Lynch 
(1983) and Lynch (1987)). A specific concern is the effect of 
imperfection in the cylindrical stem attachment on the 
dynamic behavior of the gyro. In this paper, end effects and 
time-harmonic longitudinal wave propagation in a solid cir
cular cylinder without an imperfection are studied. The com
putational technique which is developed should provide a 
crucial building block for the treatment of the general 
problem. 

The first aspect treated is the end "stiffness" which is the 
relation between the stress and displacement quantities that 
can be prescribed at the end. The second aspect concerns the 
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relation of the end quantities and the amplitudes of both 
propagating and evanescent modes at distances near and far 
from the end. End distributions of stress and/or displacement 
which are either slowly or rapidly varying with the radial coor
dinate must be considered. Since localized or rapidly varying 
end distributions can contribute significantly to all 
propagating modes, the correct relation between slowly and 
rapidly varying distributions must be preserved. To capture 
these effects with finite elements or boundary elements would 
require very large arrays. On the other hand, typical analytical 
solution techniques, which use modal expansions, also require 
a large number of modes and usually converge very slowly. 
The difficulties of the analytic method are due to the coupled 
wave nature of dilation and shear. 

The present approach, based on analytical solutions, utilizes 
the asymptotic behavior of a stiffness matrix which relates the 
spatial harmonics of stress and displacement and leads to two 
systems of equations: a small coupled system for lower har
monics and a weakly coupled system for higher harmonics. 
The weakly coupled system can be made as large as desired, so 
that the inclusion of higher harmonics does not result in poor 
conditioning or significantly increase computational effort. 
Although the method can be generalized to nonaxisymmetric 
wave propagation problems, the present work is limited to 
axisymmetric problems. 

The exact solution for wave propagation in an infinite 
cylinder was obtained by Pochhammer (1876) and Chree 
(1886), who also developed an approximate theory by replac
ing the Bessel functions in the frequency equation by the first 
two terms of the series expansions. Rayleigh (1945) derived an 
almost identical approximate equation by including the effect 
of the inertia of lateral motion. 
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Mindlin and Herrmann (1951) obtained an approximate 
equation to take into account the coupling between 
longitudinal and radial modes. Later, Mindlin and McNiven 
(1960) derived a three-mode approximate equation in which 
they expanded the displacements in terms of the Jacobi 
polynomials in the radial directions. Ulitko and Bobyleva 
(1986) generalized the results of Mindlin and McNiven (1960) 
for a piezoceramic medium. Achenbach and Fang (1970) and 
Vasudeva et al. (1986) used perturbation techniques to derive 
approximate equations for small wave numbers. The history 
of the analysis of elastic wave propagation is described by 
Green (1960), Miklowitz (1966), McNiven and McCoy (1974), 
and Pao (1983). 

Most work to date has been concerned with the establish
ment and physical understanding of dispersion relations. The 
work by Zemanek (1962, 1972), based on the exact solution, 
gives a through understanding of the dispersion relations for 
real, imaginary, and complex wave numbers. Zemanek uses a 
collocation method to study reflection and end resonance. 
McNiven (1961) uses the Mindlin-McNiven approximate 
theory for the analysis of reflection and end resonance. Folk et 
al. (1958) studies an impact problem such that a constant 
pressure is suddenly applied with a constraint in the radial mo
tion (a mixed end condition). To study reflection in semi-
infinite plates, Torvik (1967) employs the variational form of 
the equations of motion, and uses the well-known modes of 
vibration for the infinite plate as elements of expansion ap
plicable to semi-infinite plates. 

The collocation and variational approaches lead to a 
coupled system of linear equations because the eigenfunctions 
are not orthogonal. When either the normal stress and radial 
displacement or the shear stress and axial displacement is 
prescribed at the end of the cylinder, bi-orthogonality can be 
employed. When stresses alone or displacements alone are 
prescribed at the end, bi-orthogonality is not directly ap
plicable. The bi-orthogonality property of solutions to static 
problems in semi-infinite circular cylindrical bodies 
established by Fama (1972) is extended to dynamic problems 
by Frazer (1975). Later, Gregory (1983) rederives the bi-
orthogonality relation by means of the elastic reciprocal 
theorem and the elastic symmetry of the cylinder in planes 
perpendicular to its generators. Fama suggests the use of bi-
orthongonality to solve problems with general boundary con
ditions, but this also requires a system of equations. 

The existing methods for the problems with stress or 
displacement end conditions, such as collocation or the 
methods suggested by Torvik and Fama, are most useful when 
the end conditions are smooth. For rapidly varying end condi
tions in which higher modes must be included, these methods 
typically encounter computational difficulties due the large 
number of equations to be solved and slow convergence. 

In the present work, solutions are obtained to the axisym-
metric problems with the traction-free cylindrical surface, 
where either stresses alone or displacements alone are pre
scribed at the end of the cylinder. Stresses and displacements 
are expanded in terms of the Fourier-Bessel series, which 
satisify a mixed condition on the cylindrical surface. We then 
construct the stiffness matrix which relates the coefficients of 
the Fourier-Bessel series for the stress quantities to those of 
the displacement quantities at the end of the cylinder. For 
higher harmonics, it is shown that the stiffness matrix cor
responding to the traction-free cylindrical surface condition is 
asymptotically equivalent to the stiffness matrix for the mixed 
cylindrical surface condition, for which the harmonics are 
decoupled. This asymptotic behavior allows the system of 
equations partitioned into a coupled system and a weakly 
coupled system, where only the coupled system, which cor
responds to the stiffness matrix for lower harmonics, needs to 
be solved explicitly. The weakly coupled system, which cor
responds to the stiffness matrix for higher harmonics, may 

have as many equations as necessary in order to capture any 
rapid variation of the end conditions. 

The stiffness matrix approach is applied to several 
numerical examples and compared with the collocation 
method. The advantage of the present work is that even very 
rapidly varying end conditions can be handled effectively. It is 
observed that the present stiffness approach, even without in
corporating the asymptotic behavior, is much more efficient 
than the collocation method. 

2 Axisymmetric Solutions for Cylindrical Problems 

An axisymmetric solution to the wave equation for an 
isotropic elastic solid cylinder (see, e.g., Miklowitz (1978) or 
Achenbach (1975)) can be expressed 

Uj (r,z,t) = u, (r)exp[i(\z - Qt)] 

Ojj(r,z,i) = ai} (r)exp[i(\z-Qt)] 

where 

. .dJ0(hr) dJ0(kr) 
ur(r) = A : + Bi\ dr dr 

uz(r) = Ai\J0(hr)+Bk2J0(kr) 

(1) 

(2a) 

(2b) 

and 

5rr(r) '{-
1 dJ0(hr) ' f i 2 

r * (T-X 2)'»H 

~am(r)^A{~(-L^yj0(hr)+l d^r) 

+ Bi\\ (3a) 

dr ) 

+ Bi\-
1 dJ0(kr) 
r dr 

Q_2 

~2 

/ Q 2 \ 
dzz(r) = A{h2-—y0(hr)+B(fh)k2J0(kr) 

. dJ0(hr) ' Q 2 

* ( T - » ) 
dJ0(kr) 

Ob) 

(3c) 

(3d) arz(r) = A(i\)—-—— + _ .. 
dr V 2 / dr 

In (1), dimensionless quantities are used by referring the 
displacement u, and stress ay to the radius a of the cylinder, 
and 2|i, twice the shear radius, respectively. The radial and ax
ial coordinates r and z are referred to a and the time / is re
ferred to a/cs, where cs is the shear wave velocity in an infinite 
medium. The dimensionless frequency fl is referred to cs/a 
and the parameters h and k are defined as 

h2 = a2Q2-\2\ k2 = Q2-\2. (4) 

The dimensionless wave number X is referred to 1/a, the con
stant a2 is given by 

2
 1-2P 

( - £ - ) -cd / 2(1-v) ( 5 ) 

where cd is the dilatational wave velocity, and v is Poisson's 
ratio. The unknowns A and B are to be determined from 
boundary conditions. 

3 Mixed Boundary Condition on the Cylindrical 
Surface 

In the present work, the solutions which satisfy a mixed 
cylindrical surface condition are used to construct a stiffness 
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matrix, and serve as an expansion set to solve problems with a 
traction-free condition on the cylindrical surface. 

The mixed, or lubricated-rigid condition is defined by (see, 
e.g., Auld, 1973) 

t / r l , _ ,=0 ; ffjr_,=0 (6) 

and the corresponding frequency equation is 

Jiih)Ji(k)=o. (7) 

From (7), we have the solutions 

Ji(h)=0, A*0(B = 0), 

h = Hm, \2 = aW-ti,^\2
dm(m = 0,l,2, . . .) (8a) 

Ji(k)=0, B?tO(A=0), 

k=km, x2 = n2-a,^xL(w = i,2,...) m 
where £ denotes the zero of J0' (r). The subscripts d and s are 
used to denote the dilatational and shear waves, respectively. 
The solutions of (8) show that dilational and shear waves are 
uncoupled. 

The solutions for waves propagating along the +z axis can, 
therefore, be written for a given frequency A 

where 

"h 

Ur(r) = £ UmJx(&mr) 
m = l 

Uz(r) = W0+ £ W„Mimr) 
m = l 

nh 
sz(r) = Z0+ D ZmJ0(?,„/-). 

(Hfl) 

(116) 

(lie) 

(lid) 

Note that the physical quantities are real parts of the above 
quantities. 

The coefficients Um, and Wm can be computed by using the 
orthogonality property of Bessel functions (see, e.g., 
Churchill and Brown, 1978). 

Um= „ , 2 „ , j Ur(r)J^mr)rdr for m = l,2, . . . (12a) 

ur(r,z,t)=- Yi AmimJi<£mr)e iadmz-ao 

"h 

- £ 5m(\„,?m71(?m/-)e
;<x™z~n') 

m = l 

uz(r,z,t)= £ ^,„/Xdm70(?m/-)e'(X*"^J") 

m = 0 

+ £ B-^ott-r)^-1-00 

m = l 

(Tre(r,z,0=- £-4m*Arfm£m./i(£m/V *"*" ' 

fl2 

(9fl) 

(96) 

"h 

~ ^ Bm(em-^)imJl(imr)e'^-m (9c) 

ozz(r,z,t) = £ ^ ( A - ^ / o t t M ^ ' ^ - " 0 

" A 

+ Y, Bmej\smJa(tmr)e'{X°»>z-m. (9d) 

Note that (8) can be used to determine whether a particular 
term in (9) corresponds to a propagating wave (X real) or 
decaying end effect (X imaginary in z>0) . 

Equations (9) show that the eigenfunctions for ur and arz 

are simply the Bessel functions of the first kind of order 1, and 
the eigenfunctions for uz and azz are the Bessel functions of 
the first kind of order 0 in the r direction. One can, therefore, 
expand the quantities which can be prescribed at z = 0 as 

ur(r,0,t) = Ur(r)e~m 

uz(r,0J) = Uz(r)e-'nt 

<jrz(r,0,t) = S r(r)e- '" ' 

o„(r,0,t) = Sz(r)e-<"< 

(10a) 

(106) 

(10c) 

(Wd) 

ViiU)2 

Wm 

WUV 
- Uz(r)J0(£mr)rdr for /w=l ,2 , . . . 

>( Uz(r)rdr for m = 0. 

(126) 

To compute Sm, and Zm, we replace Um by S,„, i/r (r) by S, (r) 
and Wm by Zm and t/z (r) by S, (r) in (12). 

From (9)-(ll), the following stiffness relation can be ob
tained for m ?*0: 

K„ 
W 
' ' in 

Um 

(13) 

(Km) 1,1 (K,„) l i 2 

(Km)2,l (Km)2,2 

where 

A m ( K m ) i , i 
O2 

-UKm) 

r Q i 
Am(Km)1>2 = ?,„[(/Xdm)(/Xsm)-?2+—J 

n2 

(14) 

A m ( K J 2 , 2 = — (i\dm) 

(K/nh.l = (Km)l,2 

in which 

A m = ^ m - ( ^ A « ) ( ' \ m ) - (15) 

Note that the real parts of /Xsm and i\dm must be negative in 
(14) and (15). For m = 0, we obtain 

Z„ = (16) 
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Thus, 

(Ko)w = 

0 

i f i = / = l 

otherwise 

(17) 

For large wave numbers ( l \ l : » l ) , the asymptotic form of 
(13) is 

M )̂ 
i - -

Q2 

It2 

q 2 Q 2 

(18) 

The stiffness relation for the mixed boundary condition 
can, therefore, be expressed: 

K 
W 

U 

Kll K12 

K21 K22 

where 

W = 

Z0 

z2 

w2 

w 
^ "h -

s = 
s2 
s3 

ul> 

(19) 

(20) 

u = 
u2 

u„ 
where nh is the number of the highest term in the Fourier-
Bessel series. Due to the orthogonality of the Bessel functions, 
the components of the submatrices KIJ are given by 

(KU |),>m=5 /m(Km) I (21) 

where I and J are 1 or 2 and 5/m is the Kronecker delta. 
For the mixed condition, the solutions can be easily ob

tained since dilatational and shear waves are decoupled; for 
stress end conditions, 2 x 2 stiffness matrix Km can be used to 
compute the corresponding displacements, and for displace
ment end conditions, the inverse of K„ can be utilized. 

4 Traction-Free Boundary Condition on the Cylin
drical Surface 

For a cylinder with the traction-free cylindrical surface, the 
dilational and shear waves are coupled. Due to the coupling, it 
is much more difficult to get a solution for this case. We 
repeat the well-known facts concerning axisymmetric wave 
propagation. 

The traction-free condition on the cylindrical surface r= 1 is 
expressed 

and the corresponding frequency equations are given by 

W 0 ( f c ) -2 / , ( f c )=0 (23) 

(Q2-2X2)2/0(/*)•/, (k) + 4\2hkJ0(k)Jl (h) 

-2Q2hJl{h)Jl(k)=0. (24) 

Equation (23) is the frequency equation for torsional waves 
and (24) is the frequency equation for longitudinal (axisym
metric) waves or the Pochhammer-Chree frequency equation. 
Note that the solution of (24) indicates that for the traction-
free boundary condition, dilatational, and shear waves are 
coupled for a given excitation frequency. 

The cutoff frequencies for wave propagation are the roots 
of 

7, (Q) [QJ0 (afi) - 2a/! (aQ)] = 0 (25) 

which is obtained from (24) be letting X approach zero while Q 
remains finite. Similarly, if fi is allowed to approach zero 
while X remains finite, the equation for zero-frequency in
tercepts is obtained: 

X2(l - a2)[/0
2(/X) + 72(/X)] + 72(/X) = 0. (26) 

For I M » 1 , the roots of (26) can be approximated by the 
asymptotic result 

X« ±——ln(4mir) ± imir (27) 

where m is an integer. 
With the knowledge of cutoff frequencies and zero-

frequency intercepts, complete dispersion curves for a given 
Poisson's ratio v can be obtained (see Zemanek (1962, 1972) 
for details). For example, the wave numbers for a given fre
quency £2 can be determined by assuming the zero-frequency 
intercepts as initial guesses and solving (24) numerically. 

With wave numbers for a given frequency fi, we can write 

(28) 

(29) 

where p=l 

{*,$•> {r)]Z[[ur,u>!(r)Uuz,uP(r)Uorz,dPz (r)], 

and EP is the pth expansion coefficient to be determined by 
application of the condition at the ends of the cylinder. For ex
ample, uf (r) can be obtained from (2a) by replacing X, h, k 
by \",hp, k" and A, B by A", Bp, where one can choose 

kn^-2(\n2]JAk") 
AP 

20V) 

BP = hPJx(h"). 

l,= i=0; = o (22) 

(30a) 

(30fc) 

Note that the pth wave number X" is the solution of (24) and 
that Ap and B" are chosen to satisfy (22). The radial displace
ment at z = 0 can be written from (10a), (28), and (29) 

oo 

Ur{r)=^EPu?{r). (31) 
P=\ 

Similarly, the expressions for Uz(r), Sr(r) and Sz(r) can be 
obtained. For waves propagating along the + z axis, we should 
include real wave numbers with positive group velocities, and 
purely imaginary or complex wave numbers whose imaginary 
parts are positive. Purely imaginary and complex wave 
numbers correspond to end effects, which are evanescent 
along the +z axis. 

Unlike in the mixed case, there exists no orthogonality con
dition for the eigenfunctions, uf(r), u%(r), a"rz(r), and 
5P

ZZ (/•) in the traction-free case. However, the bi-orthogonality 
relation derived by Frazer (1975) and Gregory (1983) exists 
such that 
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[d»a (r)u« (r) - u? (r)a% (r)]rdr = 0 

for p?±q. 

(32) 

For p = q, the integration in the above expression can be car
ried out in a closed form by making use of (see, e.g, Tranter, 
1968) 

(a2-b2)\zJAaz)Jr(bz)dz 

= z[aJ„(bz)Jv+l{az)-bJl,(az)Jv+l{bz)\. (33) 

From (32) we can see that this bi-orthogonality property can 
be directly utilized only when (azz, ur) or (arz, uz) is prescribed 
at z = 0, but not when (ozz, an) or (ur, uz) is specified. 

5 Solution Procedure: Mixed End Conditions 

When (ozz, ur) or (an, uz) is prescribed at z = 0, stress and 
displacement quantities everywhere in the cylinder can be ob
tained by using (32) directly. For example, if (azz, ur) is 
prescribed at z = 0 for a given U (a time-harmonic end condi
tion), we can compute the expansion coefficients 

EP=-
\[Sz(r)uZ(r)-Ur(r)dPz(r)]rdr _ NP 

(34) 
\>drzz(r)u?(r)-uf(r)5Pz(r)]rdr D? 

and thus we can compute the stress and displacements by 
means of (28) and (29). 

Our solution procedure employs the solutions of the mixed 
case as an orthogonal expansion set for all harmonics of stress 
and displacement. The following matrices A and B are thus 
constructed, which are defined by 

= A 

= B 

Z 

U. 

A l l A12 

A21 A22 

W 

s 
B l l B12 

B21 B22 

(35) 

(36) 

where Z, S, W and U are defined by (20). Note that A l l , and 
Bl l are of order (nh + 1) x (nh + 1), A12, and B12, of order 
(nh + l)xnh, A21, B21, of order nh x (nA + 1), and A22, and 
B22, of order nh x nh. 

The matrices A and B are constructed as follows. First, we 
expand the eigenfunctions of the traction-free case in terms of 
the eigenfunctions of the mixed case. 

"h 

«r ' ( r )= E UPnmmr); «*(#•) = £ W^^r) 
m=l 

"h 

m = 0 
(37) 

~°PrM = E SPmM$m&, P„(r) = £ ZPmJ0(Zmr). 
m=l m=Q 

The coefficients Ufa, W^, S§„ and Z£ may be obtained using 
(12) and it can be observed that no numerical integration is re
quired in (37). 

Now equation (34) will be employed to compute A and B. In 
order to compute A l l and A21, we consider the following 
time-harmonic end condition at z = 0 when 

Ur(r)=0 
(38) 

for a given frequency Q. First, we compute E%,, which is the 
pth expansion coefficient in (34) for the end condition (38), 
and given by 

i r •/?«„)-
• C f f l ff[ 2 J 

WP (39) 

Recall that no numerical integration is required in order to 
compute the denominator of (39). The corresponding axial 
displacement [Uz(r)]m at z = 0 can therefore be calculated: 

WAr)\m = EE^(r) 

"e "h 

p = l / = 0 

"A "e 

/ = 0 Lp=l J 

Similarly, the shear stress can be determined 

"h _ "e 

is,</•)]„=!>,«,) 2>jgsH. 
/ = i L P = I j 

The components of A l l and A21 are thus given as 

"e 

(Al l ) t m = D E'Wf for / = 0,1,2 , nh 

P=\ 

"e 

(A21);m = ^EP,Sf fo r /=1 ,2 , . . . , « , 
P=\ 

for m = 0, 1 , 2 , . . . ,nh. 
By considering an end condition at z = 0, 

CUz(r)=0 

\sAr)=J^mr), 

the components of B12 and B22 can be obtained 
"e 

(B12)tM = J^EPZf for 1=0,1,2, . . ., nh 

P=\ 

(B22)/>m = Y,Ef„Ur for / = 1 , 2 , . 
P=\ 

for m = 1, 2, . . . ,nh where 

i r ^ « m ) 

(40) 

(41) 

(42a) 

(426) 

&m iy L 
UP 

(43) 

(44a) 

(44a) 

(45) 

The matrices (A12, A22), and (Bll , B21) can be computed 
similarly by considering [S z ( r )=0 , Ur(r) =J\{kmr)], and 
\Uz(r) =J0(%mr), Sr(r) =0], respectively. 

Though the solution procedure based on the expansion of 
stress and displacement for the mixed end conditions is 
presented, one may directly use equation (34); however, the 
expansion discussed in the present section will be utilized in 
the subsequent analysis for general end conditions. 

6 Solution Procedure: Traction and Displacement 
End Conditions 

For problems for which either (a^, arz) or (ur, uz) is 
prescribed at z = 0, the bi-orthogonality property (32) is not 
directly applicable. The solution procedure presented here is 
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applicable to problems when either stresses alone or 
displacements alone are specified at the end, but unlike con
ventional numerical approaches, the procedure is useful for 
end conditions with both slow and rapid variation in the radial 
direction. 

Our procedure is based on the construction of the stiffness 
matrix S such that 

W 

u 
Sl l S12 

S21 S22 

(46) 

From (35), (36), and (46), the submatrices of S can be 
determined: 

Sl l = A l l 1 

S21 = A 2 1 . A 1 1 1 , 

S12 = B12.B22 ' , 

S22 = B22-' , 
(47) 

Following the procedure used to determine S, we may also 
construct the flexibility matrix F such that 

where 

Fl l = B l l ' 

= F 
Z' 

s 
F l l F12 

F21 F22 

F12 = A12-A22"1, 

(48) 

F21 = B21 .B11 1 , A22 = A22 ' , 
(49) 

By using the end stiffness and flexibility matrices, we can 
also compute the stresses and displacements at z other than 
z = Q. To this end, the expansion coefficient in (28) for the 
traction-free case should be determined first. For example, if 
nonzero Uz (/•) zero Ur (/•) is given at the end, we first compute 
Sz(/•), and Sr(/•), which will be given as (1 lc) and (lid). Then 
any combinations of the stresses and displacements are known 
at the end so that the expression (34), the statement of the bi-
orthogonality condition, can be employed: 

E" = ^\sz(r)uP(r)-Ur(r)5Pz{r)}rdr 

It can be also written more explicitly as 

'-r j = Q
 L , „ = 0 £. -I 

The combination [Uz(r), Sr(r)] may be used for E" in (50), 
but there is no advantage. For general displacement end condi
tions, the expansion coefficient EP becomes 

(50) 

(51) 

EP = 
D" j = 0 L m = 0 2 / = 0 L m = 0 

. "h "h 

~DP~h\-h, 

-H^(Sll), 

i Zr^JHU l/£(S22), 

(52) 

j = l "-m = l 

Note that only S l l and S22 are used in (52) so that accurate 
determination of S l l and S22 is important for EP. Similar 
analysis can be carried out for stress end conditions. 

For high harmonics of stresses and displacements, 
characterized by wavelengths in the radial direction which are 

much smaller than the cylindrical radius, the boundary condi
tions at the cylindrical surface r=\ will have no signficant ef
fect on the solution, except near the cylindrical surface. This 
implies that as the wavelength of the end condition becomes 
shorter, the solution of the traction-free case must approach 
asymptotically that of the mixed case; this asymptotic 
behavior is studied numerically in the following sections. For 
the lower harmonics, the solutions of the traction-free case are 
retained and their bi-orthogonality property is utilized. 

By means of numerical studies, it will be shown in the next 
section that for higher harmonics, the components of the stiff
ness matrix S for the traction-free case approaches asymp
totically the components of K for the mixed case. Due to this 
asymptotic behavior, the computation of S for nh larger than 
a certain number of nu is not needed; instead the solutions of 
the traction-free case are replaced by the solutions of the 
mixed case. 

7 Asymptotic Behavior of the Stiffness Matrix 

The stiffness matrix under consideration relates the radial 
harmonics of stress and displacement, as opposed to nodal 
values. The advantage of working with these quantities lies in 
the asymptotic behavior of K and S for high harmonics. In ad
dition to the comparison of K and S, the stiffness matrix for a 
strip with a lubricated-rigid condition on its lateral faces will 
also be considered. The stiffness matrix M for the strip is given 
by (see the appendix) 

(MH),,m = -5 /mfi2/rsm/2A„, 

/ Q2 \ 
(M12),,,„ = 6/m j3m [pi - — + U fm ) /A„ 

(M21),im = (M12)m,; 

(M22),,,„ = -o/mfl2/frfm/2A,„ 

where 

A™ = - tdm$sm-®m> Pm= "™(m ™ an integer) 

(53) 

(54) 

The stiffness matrices were evaluated for a Poisson's ration 
of 0.3317 and Q equal to 2.0. The frequency under considera
tion is below the first cutoff frequency (3.8317) (also, below 
the end resonance, see Zemanek, 1972). In the region below 
the first cutoff frequency, we have one real wave number and 
an infinite number of complex wave numbers. A real wave 
number with its group velocity positive and complex wave 
numbers with their imaginary parts positive should be includ
ed since we are looking for waves traveling along the +z axis. 

To study the asymptotic behaviors of the stiffness matrices, 
we choose nh=2Q (ne = 101)'. For ne = 101, we have one real 
number and 50 pairs of complex wave numbers. Note that if a 
complex number X̂ . is included, - X^ is also included, where * 
represents the complex conjugate (see Zemanek, 1972). 

For the present choice of v and 0 all elements of K are real-
valued, except (Kl l ) 0 0 , which corresponds to a mode which 
propagates along the + z axis. Recall that the submatrices of K 
are diagonal matrices and that those of S are not. 

The asymptotic behavior of S can be studied by considering 

1 The number ne of wave numbers here should be sufficiently large so that the 
end conditions such as (38), and (43) for m = 0 (m= 1) to in = 20 can be well 
represented by ne eigenfunctions of the traction-free case. With ne = 5n/,, in 
general, good results were obtained. 
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O 

s 
1-1 

S-i—i 

> 

r—< 

(a) 

10 20 

Index of J 
0.12 

0.08 

0.04 

(b) Index of J 

(c) Index of J 
Fig. 1 Comparison of the diagonal elements of the end stiffness 
matrix. The magnitudes of the diagonal elements of S, the stiffness 
matrix for the cylinder with traction-free cylindrical conditions, and M, 
the stiffness matrix for a semi-infinite plate strip with mixed face condi
tions, are compared with those of K, the stiffness matrix for the cylinder 
with mixed cylindrical conditions, (if = 2) The relative difference is 
represented by Hi I / IK,; I , where C = S for —A— and C = M for 
— • — in (a) submatrices' 11 , (b) submatrices 12, and (c) submatrices 
22. Syj asymptotically approaches Kyj. 

the magnitudes of the diagonal elements, the real-valuedness, 
and the diagonal dominance of S. First, the magnitudes of the 
diagonal elements of Sll, S12, and S22 are considered. These 
elements are compared with the counterparts for the cylinder 
with a mixed condition on its cylindrical surface. Figure 1 
shows that the magnitudes of the diagonal elements of the 
stiffness matrix of the cylinder with a traction-free cylindrical 
surface asymptotically approach those of the mixed case (Kll, 
K12, and K22). 

The diagonal elements of the submatrices of K can also be 
compared with those of M, the stiffness matrix for a strip with 
a lubricated-rigid condition on its lateral faces. Figure 1 shows 
the relative difference in magnitude between (Mil);, and 
(KU)jj. Though based on different eigenfunctions, the stiff
ness matrix M asymptotically approaches the matrix K. Note 

c 

> 

IS 

(a) Index of L 

+-» 
• i—i a 
too 

> 

T—H 

(b) Index of I 
Fig. 2 Diagonal dominance in 5 1 1 , a submatrix of the stiffness matrix 
of the cylinder with traction-free cylindrical conditions, (ft = 2) (a) 
IS11y/IS11yiI : Row-wise dominance of the diagonal elements over 
off-diagonal elements in each row; (b) I S H / j / S H y j l : Column-wise 
dominance of the diagonal elements over off-diagonal elements in each 
column. — • A— •—:/ = 1, — a— :/ = 2, — «— :/ = 4, — X —w' = 8, —A—: 
I -- 13. Strong diagonal dominance in S11 is shown. 

that S approaches K faster than M does. The stiffness matrix 
for the strip, with a different geometry but similar boundary 
condition is, therefore, a poorer approximation to S than the 
stiffness matrix K, based on the same geometry but different 
boundary conditions. 

The relative magnitude of the imaginary parts of (Sll),,-
(S12)jj and (S22)yy is studied, too. It can also be shown that 
the real parts of the diagonal elements are asymptotically 
predominant over the imaginary parts. Figures 2 and 3 show 
the diagonal dominance of Sll and S22, respectively. From 
these figures, it is seen that as j becomes larger, (Sll);j 
becomes larger relative to its off-diagonal elements. Of in
terest is that even for a small j , the diagonal element (S22)JJ is 
much bigger than the off-diagonal elements in the same row 
(see Fig. 3(a)) but not in the same column (see Fig. 3 (b)). As 
shown in Figs. 2 and 3, S22 is diagonally less dominant than 
Sll. This is because the expansion set for Ur(r) imposes 
Ur\r=l =0 whereas uf (r) is not zero at r = l . 

No attempt has been made to prove analytically the asymp
totic behavior of the stiffness matrix. However, the numerical 
results show all the asymptotic behaviors such as the diagonal 
dominance, real-valuedness, and vanishing relative differences 
of SJJ with respect to KJJ. Thus, the solutions of the cylinder 
with the mixed lateral condition (6) are good approximations 
for the solutions of the cylinder with the traction-free lateral 
condition for rapidly varying end conditions. It should be 
again noted that this is valid only for solutions at the end of 
the cylinder; EP must be computed (from (52)). 

From the foregoing analysis, one can put the stiffness sub-
matrix Sll in the following form: 
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(a) Index of L 

(b) Index of I 
Fig. 3 Diagonal dominance in S22, a submatrix of the stiffness matrix 
of the cylinder with traction-free cylindrical conditions, (ft = 2) (a) 
IS22; i/S22,11: Row-wise dominance of the diagonal elements over off-
diagonal elements in each row, (b) I S 2 2 , J / S 2 2 M I : Column-wise 
dominance of the diagonal elements over off-diagonafelements in each 
column. —-A—•—:y = 1, — a — : / ' = 2, — o—:) = 4, —X —:/' = 8,—A—: 
/' = 16. Stronger row-wise diagonal dominance is observed than column
wise diagonal dominance in S22. 

(a) 

(b) 
Fig. 4 Convergence of stress distributions at z = 0 for the smooth 
prescribed displacements Ur(r) = r, Uz(r) = 0 at 2 = 0. (S! = 2) the results 
are (a) real part and (b) imaginary part of the shear stress Sr(r) obtained 
by 10 terms with Cesaro sum (dashed lines), 20 terms without Cesaro 
(dot-dashed lines), and 20 terms with Cesaro sums (solid lines). Solu
tions by the present approach appear to converge, and the Cesaro sum 
effectively suppresses the local oscillatory behaviors. 

Sl l = 
Sl lU S11R 

S11L S11D 

where 

(55) 

S11D«K11D 

where the magnitudes of the elements of S11L and S11R are 
much smaller than those of S11D and S l lU. The replacement 
of S11D by K11D can be justified by the observations that the 
diagonal elements of S l l are dominant and their magnitudes 
approach those of Kl l . Similarly, S22 has the same form as 
Sl l , but the size nu of S22U must be larger than that of Sl lU. 
(See Figs. 2 and 3). Similar structures can apply to other sub-
matrices of S, F, A, and B. 

It appears that the fact that the submatrices of A and B are 
of the structure (55) is not of great advantage to the construc
tion of S; we may have to invert A l l and B22 in (47) as if they 
were full matrices. However, the fact that PD can be replaced 
by a diagonal submatrix can be incorporated, where P stands 
for any of the stiffness/flexibility matrices. Consider the in
version of the matrix P such that 

PU PR 

PL PD 
(56) 

where PD is a diagonal submatrix and PU is a square sub-
matrix. The inverse of P, which will be denoted by Q, will be 
written 

QU QR 
Q = P - ' = 

QL QD 
(57) 

QU = P U ' - P R . P D '-PL 

QR = -QU.PR.PD" 1 

QL = - P D ' - P L . Q U 

QD = P D ' . a + PR.QU-PL.PD 1 ) . 

(58) 

Note that for P " 1 , the inversion of a full matrix is only 
limited to PU; the inversion of PD is trivial. Since the stiffness 
matrices S and F can be put in the form of (57) where PU is a 
small matrix, and PD is a large matrix, the inversion of such a 
matrix can be performed extremely efficiently. 

Note that S12^S21 r in general, because the expansion set 
for S does not consist of the eigenfunctions of the traction-free 
case. However, S12 asymptotically approaches S217". 

8 Numerical Examples 

Case 1. Slowly Varying End Condition: [Ur(r)=r, 
Uz(r)=0]. 

First, we consider a smooth displacement distribution 
prescribed at z = 0 and determine stress distributions at the 
end. The computation of U, the coefficients of the Fourier-
Bessel series for Ur(r), can be performed efficiently by the 
modified Clenshaw-Curtis method by Piessens and Branders 
(1983, 1984). Then the stiffness submatrices SIJ in (46) is con
structed. S and Z can be computed by applying (46), from 
which we determine the stress distribution at z = 0 by summing 
up the series in (lie), (lid). With nh=nu equal to 10(ne = 51) 
and 20 {ne = 101), the results for stresses at z = 0 are shown in 
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(a) 

(b) 

(d) 

Figs. 4 and 5. (The structure (55) needs not be used for this 
smooth end condition.) 

We present solutions which are computed by means of 
Cesaro sums (see, e.g., Edwards, 1979). The Cesao sums in a 
weighted sum of the terms in a Fourier (or Fourier-Bessel) 
series, and is computed as the arithmetic mean of partial sums. 
This technique improves the convergence of a finite Fourier 
series which would otherwise converge slowly. Because the 
low-order terms are weighted more heavily, the Cesaro sum 
works most effectively when applied to the slowly convergent 
"tail" of the series, for which the coefficients decrease 
monotonically. Figure 4 shows the distribution of the shear 
stress at z = 0 as a function of r with nh = 20. The present solu
tions appear to converge expect at r = 1, where the shear stress 
is expected to be singular and the series grows accordingly. It 
is also seen in Fig. 4 that the Cesaro sum effectively suppresses 
the local oscillatory behaviors. 

In Fig. 5, the present solutions (nh=20) with the Cesaro 
sums are compared with the results obtained by the colloca
tion method with ne = 51 and ne = 101. (Zemanek (1972) used 
the collocation method to determine the end resonance.) The 
comparison shows good agreement between the present results 
(nh=20) and the results by collocation with «e = 101 except 
near r=\. Table 1 shows the CPU times in obtaining the 
stresses at z = 0. It may be seen that the collocation method is 
not very efficient even for slowly varying end condition. 

Case 2. Rapidly Varying End Condition: [Ur(r)=0, 
Uz(r)=cos(25irr)]. 

As a second example, a prescribed displacement distribution 
with rapid spatial variation is treated. The present solutions 
with nh =40 (ne =201) are obtained with and without employ
ing the structure (55). They are compared with the results ob
tained by the collocation method with ne = 301 and ne = 501. 
When the form (55) is employed in the present approach, nu is 
chosen to be 20; the relative differences of S11;J and S21yy 

with respect to Kl l y j and Klljj fory>20 are insignificant. 
The results for the stresses at z = 0 are shown in Fig. 6, and 

the axial stresses at z other than z = 0, namely at z = 0.5 and 
Z= 1.0, are shown in Fig. 7. 

Before examining the detailed stress distributions, we show 
in Table 2 the first few expansion coefficients Ep determined 
by the two methods. Note that the first few terms are impor
tant for far-field solutions. In Table 3 we also present the CPU 
times required in obtaining all the results shown in Figs. 6 and 
7. 

Table 2 shows that the expansion coefficients estimated by 
the present approach agree very well with those by the colloca
tion method with 501 terms. The results for Ep by the present 
solutions with the structure (55) incorporated are almost as 
good as those obtained by collocation with ne = 301. One can 
see that the collocation method requires very many unknowns 
for accurate solutions and converges very slowly. A com
parison of the CPU times in Table 3 shows that the collocation 
method requires a great deal of computation. The present 
solution approach is very efficient especially for rapidly vary
ing end conditions. 

Examining the detailed stress distributions in Figs. 6 and 7, 
we see good agreement between the two methods. Figure 7 
shows how rapidly the first mode is reached as z becomes 
larger. The large real parts of the stresses at 2 = 0 (Figs. 6(b), 
(d)) imply that the rapidly varying end condition results in so-
called end effects. The small imaginary parts of the stresses 

Fig. 5 Comparison of the present method to collocation for the 
smooth prescribed displacements Ur(r) = r, Uz(r) = 0 atz = 0(0 = 2). Real 
part (a), and imginary part (b) of the shear stress S,(r), and real part (c), 
and imaginary part (d) of the normal stress Sz(r). Results shown for 20 
terms with Cesaro sum (solid), and collocation with 51 unkowns (dot-
dashed) and 101 unknowns (dashed). Good agreement between the 
results by the present approach and collocation is observed. 

Tab 

Collocation 
(«e = 51) 

69 Sec. 

e 1 CPU time for Case 1 in Convex C-l 

Collocation Present Present 
(fle = 101) (K* = 10) (nh=20) 

239 Sec. 8 Sec. 28 Sec. 
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Fig. 6 End stresses due to rapidly varying prescribed displacement 
UzM = cos(257rr), Ur(r) = 0 (0 = 2). Real part (a), and imaginary part (b) of 
the normal stress Sz(r); and real part (c) and imaginary part (d) of the 
shear stress Sr(r). Results shown for 40 terms with (dotted) and without 
(solid) asymptotic forms, and collocation with 301 unknowns (dashed) 
and 501 unknowns (dot-dashed). With much smaller numbers of the 
unknowns, the present solutions agree very well with those by 
collocation. 
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(d) 
Fig. 7 Real part of normal stress as a function of r subject to the end 
condition l/zW = cos(25irr), Ur(r) = 0 at various z (Si = 2); (a) z = 0.5, (b) 
z = 1.0, (c) z = 10.0, and (d) z = 20.0. Results shown for 40 terms with (dot
ted) and without (solid) asymptotic forms, and collocation with 301 
unknowns (dashed) and 501 unknowns (dot-dashed). Both for near- and 
far-field solutions, the present results are in good agreement with those 
by collocation. 
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Fig. 8 Imaginary part of normal stress as a function of r subject to the 
end condition Uz(r) = cos (25*f), U,(r) = 0 at various z (Q = 2); {a) z = 0.5, (b) 
z = 1.0, (c) z = 10.0, and (d) z = 20.0. Results shown for 40 terms with (dot
ted) and without (solid) asymptotic forms, and collocation with 301 
unknowns (dashed) and 501 unkowns (dot-dashed); Both for near- and 
far-field solutions, the present results are in good agreement with those 
by collocation. 

correspond to the power input. To see this, one can consider 
the time-averaged power input at z = 0, which can be expressed 
by 

^ = -o^l° dtlrdr[°«{rM du.(r,0,t) 

dt 

+ <Jn{r,0,t} 
dur(r,0,t) 

] 
(59) 

J0 l$[Sz(rm[Uz{r)]-%[Sz(rmUz(r)]}rdr 

\o {<SlSr(r)W[Ur(r)]-%[Sr(rmiUr(r)])rdr. 

The negative sign is required in the first line of (59) because the 
r and z components of the traction at z- 0 are - on and - urz, 
respectively. 

For the end condition under consideration, 

< W) = -L [_ 3 f t (rmiU* (r)]rdr. (60) 

From (60), one can observe that the imaginary part of the nor
mal stress in the present case carries energy away from the 
end. Thus, the big real part of the shear stress in comparison 
with the imaginary part produces a very localized stress and 
displacement distribution near the end. We may also see that 
the average power input is positive, which confirms the solu
tions are meaningful. 

We have also studied some stress end conditions and ob
tained good results in comparison with collocation. Generally, 
the observations made here are applicable to the stress end 
conditions. 

9 Conclusions 

End effects and wave propagation have been studied in a 
semi-infinite circular cylinder which is free of traction on its 
cylindrical surface. An efficient analysis procedure was 
presented, which is based on a stiffness matrix which relates 
the radial harmonics of stresses and displacements. In forming 
this stiffness matrix, solutions for the cylinder with a 
lubricated-rigid condition on its cylindrical surface provide an 
expansion set for the traction-free case. For high-order har
monics, the stiffness matrices for the traction-free and 
lubricated-rigid conditions are asymptotically equivalent. 

Unlike other numerical methods such as finite element or 
boundary integral methods which typically require the solu
tion of large systems of equations, the present method can 
lead to a small coupled system for lower harmonics and a 
weakly coupled system for higher harmonics. Due to the small 
number of equations in the coupled system, the present 
method is very efficient for end conditions win rapid varia
tion. The effectiveness of the present method was 
demonstrated by means of numerical examples. The technique 
of Cesaro sums proved effective in enhancing the convergence 
of the solutions, especially for slowly varying results, and 
good agreement with the conventional collocation method was 
observed. 
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Table 2 Magnitudes of the expansion coefficients for Case 2 

IE" I Collocation 
(n e = 301) 

Collocation 
(n c = 501) 

Present 
(„h=40;nu=40) 

Present with (55) 
( n , , = 4 0 ; « „ = 2 0 ) 

\El\ 
\E2\ 
\E3\ 
l ^ 4 ! 

0.341E-1 
0.680E-2 
0.430E-2 
0.144E-2 

0.348E-1 
0.694E-2 
0.439E-2 
0.149E-2 

0.349E-1 
0.696E-2 
0.440E-2 
0.147E-2 

0.361E-1 
0.719E-2 
0.454E-2 
0.152E-2 

Table 3 CPU time for Case 2 

Collocation 
(/ie = 301) 

2599 Sec. 

Collocation 
(ne = 501) 

9122 Sec. 
(«/• 

Present 
= 40;„„ = 
191 Sec. 

in Convex C-l 

= 40) 
Present with (55) 
(nh=40;nu=20) 

77 Sec. 
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A P P E N D I X 

Consider a strip with a lubricated-rigid condition on its 
lateral faces, assuming a plane strain condition in the x-z 
plane. The boundary condition can be expressed 

" A = ± i = 0 , ax, i = 0 . (Al) 

Note that the coordinates x, z and the displacements ux (x, z, 
/), uz (x, z, t) are referred to the strip half-width a, and all the 
stress quantities are referred to 2fi. Otherwise, we use the same 
dimensionless quantities introduced in Section 2. The solu
tions for symmetric waves propagating along the + z axis can 
be rendered in the following form (see Miklowitz (1978))2: 

ux(x,z,t) = - YJ AmPm(sml3mx)e' "'"' 
m = 0 

+ £ Bmi^m(smPmx)eiH^at) 

m=l 

Uz(X,Z,t) = E ^mtfrfm (COS/3mX)e'< f*"Z 

m=0 

- ^Bm/3m(cosfimx)ent^-il') 

(A2) 

(A3) 

axz(x,z,t) = - £ Amifimi:dm(smffmx)e 
M = 0 

fi2 

'•<W-a'> 

• E [*.(«—)] 
(A4) 

(sinj3,„x)e '•<f™*-n<> 

Hz (x,z,t) = YiAm fe--r) (cos/3,„x)e' <w-n<> 
(.45) 

L SmfiJ^m(cosfimx)e <(?„„*-«<> 

where ?dm = cv2Q2 - $2
m, f2,„ = fl2 - P2

m, and /3„, = mir (m is an 
integer). One can expand the quantities, which can be 
prescribed at z = 0 in terms of the sine and cosine series, as 

UA*) = D Um(smPmx) 

Uz(x) = W0+ E W,„(cosl3mx) 

(AS) 

(A9) 

2The coordinate system used here is different from the system used by 
Miklowitz; interchanging x and z will produce the solutions given by Miklowitz. 
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s*zM= E Sm(smpmx) 

Szz(x)=Z0+ J ] Z„,(cos/3mx) 

0410) 

0411) 

where Ux(x) and Uz(x) denote the tangential and normal 
displacements, and Sr(x) and Sz (x) are the shear and normal 
stresses at z = 0. Note that the time dependence of the end con
ditions is omitted. The coefficients Um, Wm, Sm, and Zm can 
be determined using the orthogonality property of the Fourier 
series. Following the procedure used to derive K, we obtain the 
stiffness matrix M for the strip with the mixed wall condition: 

M 

M i l 

M21 

M12 

M22 

where Z, S, W, and U are defined in (20). 
The components of the submatrices are 

Q2 

(Mll),,m = -5,m-^-tf/,„/2A„ 

(M12),,m = 8lmt3m (/3; 

(M21),,m = (M12)m,, 

(M22),im = -S,„ 

Q2 

- + fc issm ) /A„ 0413) 

A ildm) /A„ 

where 

0412) 

V 2 

^ m ~~ ™ i dm ism ' (/l 14) 
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Uncoupled Wave Systems and 
Dispersion in an Infinite Solid 
Cylinder 
In this study, it is shown that there exist uncoupled wave systems for general non-
axisymmetric wave propagation in an infinite isotropic cylinder. Two cylindrical 
surface conditions corresponding to the uncoupled wave systems are discussed. The 
solutions of the uncoupled wave systems are shown to provide proper bounds of 
Pochhammer's equation for a free cylindrical surface. The bounds, which are easy 
to construct for any Fourier number in the circumferential direction, can be used to 
trace the branches of Pochhammer's equation. They also give insight into the modal 
composition of the branches of Pochhammer's equation at and between the intersec
tions of the bounds. More refined dispersion relations of Pochhammer's equation 
are possible through an asymptotic analysis of the itersections of the branches of 
Pochhammer's equation with one family of the bounds. The asymptotic nature of 
wave motion corresponding to large wave numbers, imaginary or complex, for 
Pochhammer's equation is studied. The wave motion is asymptotically 
equivoluminal for large imaginary wave numbers, and is characterized by coupled 
dilatation and shear for large complex wave numbers. 

1 Introduction 
Pochhammer (1876) studied wave propagation in a solid 

circular cylinder with a traction-free cylindrical surface. 
Numerous subsequent investigations, both analytical and 
numerical, have shown that the traction-free condition leads 
to an intricate dispersion relation, and wave systems with 
coupled shear and dilatational behavior. Establishing the 
dispersion relation has therefore been a major concern. 

Many attempts to construct the dispersion relation have 
been made. Perhaps the most noteworthy of those has been by 
Mindlin and his colleagues, who have used the ideas of 
bounds—grids of intersecting curves—to construct approx
imately the branches of Pochhammer's equation. Onoe, 
McNiven, and Mindlin (1962) present a technique for deter
mining approximately the dispersion relation for axially sym
metric wave propagation. By means of bounds, the branches 
of Pochhammer's equation are approximated for both real 
and imaginary wave numbers. The bounds are chosen in such 
a way that the exact equation for the cutoff frequencies is 
satisfied. 

Pao and Mindlin (1960) also apply bounds in constructing 
the dispersion relation of flexural waves for real wave 
numbers. For the flexural wave motion, other families of 
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curves, called barriers and intersectors, are introduced in addi
tion to the two families of bounds which satisfy the exact 
equation for cutoff frequencies. One family of the bounds is 
easy to construct, but the other family is difficult to construct 
directly, and is constructed approximately through auxiliary 
barriers and bounds. Some of the auxiliary curves are deter
mined approximately because the corresponding governing 
equations are not simple to solve. These families of curves are 
all employed in order to trace the branches of Pochhammer's 
equation approximately. 

Pao (1962) extends the technique used for flexural wave mo
tion with real wave numbers to the case of imaginary wave 
numbers. Kumar (1972) also discusses the dispersion relation 
for flexural wave motion with imaginary wave numbers. Due 
to the complicated nature of Pochhammer's equation, there 
are no simple bounds which satisfy Pochhammer's equation, 
either exactly or approximately at some intersections of the 
bounds, and the equation for the cutoff frequencies. 

The application of bounds has not been extended to general 
nonaxisymmetric wave propagation in the cylinder. The 
bound technique of Pao and Mindlin (1960) is not very simple 
to use; thus, it appears that a substantial amount of work 
would be required to extend the technique to nonaxisymmetric 
wave propagation. 

Rather than constructing an approximate dispersion rela
tion of Pochhammer's equation, Armenakas, et al. (1969), 
and Zemanek (1972) solve the exact dispersion relation 
numerically for several Fourier numbers in the circumferential 
direction. A CDC 6400 machine was utilized to construct the 
branches of Pochhammer's equation for real, imaginary, and 
complex wave numbers. Nelson, et al. (1971) employ a semi-
analytic finite element formulation to obtain dispersion rela-

Journal of Applied Mechanics JUNE 1989, Vol. 56/347 

Copyright © 1998 by ASME
Copyright © 1989 by ASME

  Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



tions for real wave numbers in orthotropic hollow cylinders, 
and Huang and Dong (1984) extend the approach to 
anisotropic cylinders to construct dispersion relations for real, 
imaginary, and complex wave numbers. 

The idea of establishing bounds goes back to Holden (1951) 
and Mindlin (1951), who identified bounds by simple algebraic 
equations with roots which coincide with those of the frequen
cy equations for rods and plates. Mindlin (1960) shows that 
for wave propagation in an infinite plate, the solutions for 
rigid-lubricated lateral surfaces can be used as bounds for the 
branches of the Rayleigh-Lamb frequency equation. Note that 
for plates, the proper bounds are the solutions corresponding 
to a lateral surface condition different from the traction-free 
boundary condition. The solutions for the plate with the rigid-
lubricated condition give an uncoupled wave system, and at 
the intersections of the bounds, the solutions can be used to 
characterize the nature of wave motion governed by the 
Rayleigh-Lamb equation. 

Unlike wave propagation in the plate, the bounds for the 
branches of Pochhammer's equation discussed so far have not 
been related to solutions of a cylinder with any other physical 
boundary conditions than the traction-free condition. In addi
tion, uncoupled wave systems for general nonaxisymmetric 
wave propagation in a cylinder have not been studied. Due to 
the fact that no completely uncoupled wave motion can be 
found for Pochhammer's equation at the cutoff frequencies, it 
has been assumed that completely uncoupled wave motions 
corresponding to physical boundary conditions are not possi
ble. (See Pao and Mindlin (I960).) 

In the present study, it is shown that there exist uncoupled 
wave systems for general nonaxisymmetric wave propagation. 
Two cylindrical surface conditions corresponding to the un
coupled wave systems are discussed. It is shown that the solu
tions of the uncoupled wave systems provide proper, easily 
constructed bounds for Pochhammer's equation. The bounds 
defined by Pao and Mindlin (1960) are such that Pochham
mer's branches must not cross them except a set of predeter
mined points (Pao, 1988). However, the present bounds sim
ply refer to auxiliary curves from which Pochhammer's 
branches may be traced approximately. Only one of the two 
families of cutoff frequencies for the traction-free case is 
satisfied exactly by one set of the present bounds, and the 
branches emanating from them can be traced systematically. 
The other family of cutoff frequencies is not obtained exactly 
by the present bounds, but the branches starting from these 
can still be traced systematically. 

An important aspect of the present approach is that the 
present bounds well approximate the points corresponding to 
local maximum and minimum group velocities in the 
frequency-wave number plane. This aspect may become useful 
in transient wave propagation. Shen (1988) points out that the 
wave modes of frequencies centered around the local max
imum and minimum group velocities contribute most to the 
response in transient wave propagation. 

From the numerical point of view, the present bounds can 
alleviate the computational efforts substantially, especially 
where the branches of Pochhammer's equation are close. (See, 
e.g., Fig. 2) It was difficult to obtain the correct dispersion 
relation numerically without knowing the behavior of 
Pochhammer's branches, which can be predicted by the pres
ent bounds. 

2 Pochhammer's Equation and Its Asymptotic Forms 

A solution to the wave equation for an isotropic elastic solid 
cylinder (see, e.g., Miklowitz (1978) or Achenbach (1975)) can 
be expressed 

u,(r,6,z,t) = u,(r) \^"n
e
6]exp[i(Xz-m] 

on (rft,z,t) = SU (r) j j n
s "J, ]exp[/(Xz-O0] 

(1) 

where 

u,ir)=A * ^ + B(ft> ^ 1 - C - ^ J A k r ) (2a) 
dr dr r 

n n , „ dJAkr) 
ue (r) = -A—J„ (hr) -B(i\) — Jn (kr) + C "^ 

and 

uz (r) =A (ik)J„ (hr) +Bk2Jn (kr) 

1 dJn(hr) V n2 / 0 2 

(2b) 

(2c) 

M M - - T ^ + [ - £ - ( T - » ) ] ' . H 
- f i ( i \ ) [ - — 

1 dJ„(kr) / n 

dr (-^-*2)7"(H 
- C „ 

d \J„(kr)l 

, r «2 1 dJn(kr)l 
+ B(i\)l-—Jn(kr)+~ ^ J 

dr I r J 

azz (r) =A (h2-—)jn (hr) + B(i\)k2J„ (kr) 

f n dJAhr) n ~| 
Sfl(r)=A[—r ^-± + -Jn(hr)\ 

(3b) 

(3c) 

+ B (i\)[-

[-

n dJ„(kr) n 

r dr r2 Jn(kr)] 

1 dJ„(kr) ( n2 k2 

dr 

5rz(r)=Am^fH + B ^ 

' i\\ n 

(3d) 

dJ„(kr) 

dr 

°6; 

-CKY)-J"{kr) 

n /12^ \ n 
(r) = -A (iX) — /„ (hr) -B(-j—\2)— J„ (kr) 

(3e) 

+ C 
i\\ dJ„(kr) 

(T) dr 
Of) 

In equation (1), ue, a^, and aez take sin nd and the other 
quantities take cos«0. Dimensionless quantities are employed; 
the displacement «, and stress ay, are referred to the radius a 
of the cylinder, and 2^, twice the shear modulus, respectively. 
The radial and axial coordinates denoted by r and z are re
ferred to a and the time t is referred to a/cs. The velocities of 
dilatational and shear waves in infinite isotropic media will be 
denoted by cd and cs, respectively. The dimensionless frequen
cy Q is referred to cs/a and n is the Fourier number in the cir
cumferential direction 8. The parameters h and k are defined 
as 

h2 = a2Q2-\2: k2 = Q2-\2 
(4) 
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where X is the dimensionless wave number referred to 1/a, and 
the material property a is given by 

•, / cs \ 2 1 - 2c 

2(1-K) 

where e is Poisson's ratio. J„ is the Bessel function of the first 
kind of order n. The parameters h and k are associated with 
dilatational and shear waves, respectively, and the unknown 
constants A, B, and C are to be determined from boundary 
conditions. 

For future reference, we first repeat some of the well-known 
facts concerning Pochhammer's frequency equation. 
Pochhammer's equation can be obtained by applying the 
traction-free cylindrical surface condition, namely, 

"rr ' r= T = 0; <xrfl,= 1 = 0 ; a r J r = 1 = 0 . 

For n^O, the traction-free boundary condition gives 

where 

M, > = («2 1 

M12 

M22 

M32 

n2 

M 

M; 

M: 

\i 
r23 

F 33_ 

-

' y p 

B 

<.CJ 

>. == . 

"0" 

0 

^ 

(6) 

(7a) 

-\2)jn(h) 

M2l = -hJ'„(h)+Jn(h) 

M3l=(i\)hJ>(h) 

Mn = (ik)(n2-\-k2)Jn(k) 

M22=(ik){-kJ'„(k)+Kn(k)} 

'Q2 

(lb) 

M32=[—-\2)kJ^k) 

Mn = 
k2 

k / k \ 

T- /- (* )+( , ,~2r)y-
(k) 

M 3 3 = - ( y ) / ! / „ ( * ) . 

In (lb), the superscript ' denotes differentiation with respect 
to the following argument. By requiring that \MiJ\=0, 
Pochhammer's frequency equation is obtained. 

For n = 0, (7) degenerates to two sets of equations: 

where 

\M°U M?2] C4] _ TO] 
lM°2i M°22]lBJ loj 

M0
u=-hJi(h)+(\2-—)J0(h) 

M°2i = (i\)hJi(h) 

M°l2 = (i\)l-kJ^k)-k2J0(k)] 

Q2 

(8a) 

(86) 

m = (—-\2)kJi(k) 

and 
, k i 

[kJi(k)+(-Y)Jo(k)]C=0. (9) 

By imposing IM$1 =0 , the frequency equation for symmetric 
longitudinal waves is obtained. Equation (9) corresponds to 
the frequency equation for torsional waves. 

It is known that for a given fi, there are a finite number of 
real wave numbers and an infinite number of imaginary and 
complex wave numbers, where the imaginary and complex 
wave numbers are associated with end effects. Note that dila-
tional and shear waves do not propagate at distinct phase 
velocities, but at the same phase velocity since Pochhammer's 
equation gives a coupled wave system. 

For n^O, the cutoff frequencies are obtained by letting 
A = 0 in (7) 

/ ; ( 0 ) = 0 (10a) 

[2(M2 - l)QJ^(U) -Q2J„ (Q)][<xQJn («Q) ~h («0)] 

_ [ni _ i _ _ _ j j n (aO)[(2n2 - 0 2 ) J„ (0) 

-207^(Q)] = 0. (106) 

Corresponding to (10a), A, C, and X are identically zero and, 
thus, from (2) the displacement is purely axial and 
equivoluminal. Corresponding to (106), 

5 = 0 

A _2(l-n2)QJ^(Q)+Q2J„(Q) 

n(2n2-2-Q2)J„(aQ) 
(11) 

where the particle motion is restricted in the cross-sectional 
plane (uz = 0). 

For the longitudinal waves, the cutoff frequencies are deter
mined by 

7 , (Q)=0 

QJQ(aQ) -2aJl(aQ) =0 . 

(12a) 

(126) 

For (12a), A = 0 and the motion is entirely axial and 
equivoluminal. For (126), B = Q and only the radial motion 
remains. 

When v=\/2 (incompressible materials), (126) disappears 
for « = 0, and (106) must be replaced by 

(«-l)[2(7j2-l)fi7^(fi)-fl27„(fl)] 

- in2- 1 J[(2n2-U2)J„(Q)-2Q.J'n($))] = 0. 

For short real-wave lengths, it is known that the phase 
velocity of the lowest branch approaches the Rayleigh surface 
wave velocity and the phase velocities of higher branches ap
proach the shear wave velocity in an infinite medium (See, 
e.g., Bancroft (1941), and Hudson (1943)). The discussion to 
this point roughly covers the well-known aspects of Pochham
mer's equation. 

The equation for the zero-frequency intercepts of Pochham
mer's equations can be written 

(\-a2){2^J^) + [(ii2-n2)2-n2}Jn(ti)) 

'l^U^lx)]2 + ^2-n2)Jj,(ti)} 

+ 2 (« 2 - l ) ^ [^ ( /x ) ] 3 - / i 4 [ ^ (M) ]V„(M) (13) 

+ (2«V2 + In2 - 2n*)ixJ'n (/x) J2, (ti) -n 2 n 2 J l (;i) = 0 

where ii = i\. For moderate n's, (13) can be approximated by 

llx2V;,(fi)]2 + (»2-n^JlMWnM ~0- 04) 

The asymptotic solution of the first factor of (14) is 

^ = /'X= ± (m + W ± — ln4 (m + —-W \i (15) 

where m is an integer. Similarly, the approximate solution of 
the second factor of (14) is given by 

H = i\s* ±(m + — T)*' ^ 
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The equation (15) for the zero-intercepts is also given by 
Zemanek (1972), which can be obtained by dividing (13) by 
T^(^). Since Jl(ix) is assumed to be nonzero in Zemanek's 
analysis, the asymptotic solution (15) is obtained, but not the 
asymptotic solution (16). 

For a given Q and n, the asymptotic solutions (15) and (16) 
remain valid as X approaches infinity. Through the asymptotic 
analysis, it can be shown that for (15), C~0, but the solutions 
related to A and B remain where the dilatational wave and one 
of the shear waves are coupled. For (16), ^ 4 = 0 , 5 = 0, and the 
only nonvanishing solution in the asymptotic analysis cor
responds to the coefficent C. In this case, the motion is asymp
totically equivoluminal. Thus, in characterizing the wave mo
tion for certain limits, this analysis for large imaginary and 
complex wave numbers will be useful, just like the known 
results for the wave behavior for small wave numbers, and for 
large, real wave numbers. 

From (4) it may be seen that the plane of 0 and positive real 
X is divided into three sectors in which Pochhammer's equa
tion has different behaviors, depending on whether the 
arguments h and k of the Bessel functions are real or 
imaginary: 

Sector l(0<fi/X< 1): h and k imaginary 
Sector 2(1 <fi/X< 1/a): h imaginary, k real 
Sector 3(1 /a<Q/X<oo): h and k real. 

When k = 0, the displacements corresponding to the B and C 
parts must be replaced: 

ur(r) 
dJAhr) 

--A — ^ — - + Br"-l+Cr"+l 

dr 

ue(r)=-A J„(hr)-Br"-l+Cr" 
r 

uz(/•) =A (i\)J„ (hr) - C 2 ( "„ + l) r" 
i\ 

(17a) 

(lib) 

(17c) 

Then My- will be given by 

M„=n — 

M31 =n(;'X) 

where the appropriate displacements corresponding to the 
coefficients are Anr"~1, —Anrn~x, and A(i\)r" for ur(r), 
u0(r), and uz(r), respectively. For « = 0, no replacement is 
necessary. The analysis for k = 0 and h = 0 is an extension to 
general n of Pao and Mindlin's work (1960) for the flexural 
wave propagation. 

3 Uncoupled Wave Systems 

In the preceding section, we have considered the traction-
free boundary condition and have noted some aspects of the 
intricate nature of Pochhammer's equation. Due to the in
tricacy which is associated with the coupling of the dilational 
and shear waves, Pochhammer's equation is not easy to solve. 
One way to construct the dispersion relation of Pochhammer's 
equation is to use the bounds suggested by Mindlin and his 
colleagues. As pointed out in Section 1, their analysis is 
limited to longitudinal and flexural wave motions. The tech
nique may produce good approximate solutions, but it re
quires a considerable amount of work even in constructing the 
bounds themselves. It also appears that generalization of their 
technique to n other than 0 or 1 would require much effort. 
The difficulties arise because the bounds must satisfy the exact 
cutoff frequency equations as well as Pochhammer's equation 
either exactly or approximately at the intersections of the 
bounds. Furthermore, as pointed out by McNiven and McCoy 
(1974), it is difficult to use the bounds in identifying the nature 
of the branches of Pochhammer's equation. 

In the present study, a different approach is taken in order 
to study Pochhammer's equation. Instead of examining 
Pochhammer's equation at certain special points, solutions of 
general cylindrical boundary conditions are studied. It is 
shown that there exist uncoupled wave systems for two sets of 
boundary conditions. These uncoupled systems correspond to 
purely dilatational or equivoluminal deformations. The solu
tions of the uncoupled wave systems are shown to provide ap
propriate, easily constructed bounds for any n. 

The general conditions on the cylindrical surface r = 1 can 
be written 

Af,,= - 1 + -

«»4 
M13 = n + 1 

M 2 3 = 0 

M33 = 

(18) 

[,,_^I>] 
and Mn, M21, and M31 are unchanged. For n = 0, 

dJ0(hr) 
ur(r)=A 

dr 
-B(i\)r 

uz(r)=A(i\)J0(hr)+2B 

and M°n and Af§2 in (8) are replaced by 

M ° 2 = - / X ; M « 2 = ^ -

(19«) 

(196) 

(20) 

Similarly for h = 0, one must replace the following elements 
in (7) by 

M n ^ + n-2)-{-^-y 
M2, = - n + 1 (21) 

arr + e, ur = 0 

<7rf>+e3«e=0 

(22) 

where e,- can be any number. The traction-free and rigidly 
fixed surface conditions are obtained by taking ex = e2 = e3 = 0 
and oo, respectively. 

First, consider the following cylindrical surface condition, 
which can be obtained by setting e{ = oo, e2 = 0 and e3 = 1 in 
(22) 

ur = 0 (23«) 

(23b) 

(23c) 

Equations (23a, b) state that the cylindrical surface is rigidly 
constrained radially, but free to move axially (or lubricated). 
Equation (23c) is an elastic spring constraint in the cir
cumferential direction. 

Substituting equations (l)-(3) into equations (23) leads to 
the following frequency equation 

J'n{h)J'n(k)Jn(k)=0. 

The solutions are 

J^{h)=0,A?i0(B = C = 0), 

(24) 

(25a) 
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K(k)=0,B*0(A=C = 0), 

k = ^,\2 = (Q2-ij)^\2
sl (256) 

Jn(k)=0,C*0(A^B = 0), 

k = Pm,\2 = (Q2-pl) = rt„ (25c) 
where | and p denote the zeros of J'„ (r) and Jn(r), respective
ly, and j , I, and m are integers. The subscript d is used to 
denote the dilatational wave and 5 and / are used for the two 
shear waves. From (25), it is easily seen that the corresponding 
wave systems are uncoupled. 

Secondly, consider the conditions obtained by taking e, = 1, 
e2 = e3 = 0 in (22), which are 

uz=0 

(26a) 

(26b) 

(26c) 

Equation (26a) represents an elastic constraint in the radial 
direction, and equations (266, c) are rigid cylindrical surface 
conditions in the axial and circumferential directions. 

Substitution of equations (1-3) into equations (26) gives 

Jn(h)Jn(k)J'n(k)=0. (27) 

Corresponding to (27), we have another uncoupled wave 
system, with 

Jn(h) = 0,A* 0(5 = C=0) , 

h=pp,\> = (aW-pl)^tip 

Jn(k)=0,B?iO(A = C = 0), 

Ar = p? ,X2 = ( n 2 - p 2 ) - ^ 

J'„ (k) = 0,C*0(A=B = 0), 

fc=£M\2 = (fl2-S2)^,4 

(28a) 

(286) 

(28c) 

where p, q, and r are integers. 
It is interesting that the surface condition 

ur = 0; an + uz = 0; -0 (29) 

gives the same equation as (27), but a completely uncoupled 
wave system cannot be obtained from this condition. In 
general, when e , = 0 or oo, which includes the cases 
uT = arz = aH = 0 and arr = uz = ue = 0, no uncoupled wave 
system can be found. 

When n = 0, it is seen that (23) and (26) degenerate to 

f«, = 0 

arr + ur = 0 
«7 = 0 

and 

( j ffrf,+H0=O. 

(30) 

(31) 

(32) 

Equations (30) and (31) are the cylindrical conditions for the 
uncoupled wave systems for axisymmetric longitudinal wave 
propagation, whereas (32) is the condition for torsional mo
tion. The solution of the uncoupled wave system (30) is 

JHh)=0; h = kj 

X2 = a 2 Q 2 - y 

Ji(k)=0; k = i, 

X 2 = Q 2 - £ 2 

where £ is the solution of J& (r) =0- Similarly for (31), 

(33a) 

(336) 

J0(h)=0; 

X2 = a 2 f i 2 -

J0(k)=0; 

\2=a2-Pl 

h = 

P\ 

k = 

~-PP 

--Pq 

(34a) 

(346) 

where p is the solution of / 0 (r) = 0. 
Kim and Steele (1987) use the solution of (30) to solve the 

axisymmetric end problems of longitudinal wave propagation. 
Except for the wave system corresponding to (30), it appears 
that the wave systems explored here, including (31), have not 
been discussed previously and it has been believed that there 
exist no uncoupled wave systems for general nonaxisymmetric 
wave propagation. The usefulness of the uncoupled wave 
systems presented in the present work is not just that the solu
tions of the uncoupled systems provide the proper bounds of 
Pochhammer's equation and can be used to study the nature 
of Pochhammer's equation (as shall be discussed later); but 
that these solutions may be used as an expansion set for 
displacement and stress for end problems of general nonaxi
symmetric wave propagation as done by Kim and Steele (1987) 
for longitudinal wave propagation in a semi-infinite cylinder. 

In the subsequent discussion, the families of curves which 
correspond to (25a) and (28a) will be called P and PP curves. 
The curves represented by either (256) or (28c) and either (25c) 
or (286) will be called S and T curves. 

4 The Dispersion Curves of Pochhammer's Equation 
and Bounds 

Though the dispersion curves for longitudinal wave prop
agation can be constructed from the present bounds, non
axisymmetric wave propagation, which is more difficult to 
deal with, is focused on here. 

The dispersion relation for n = 2 is considered first. In Fig. 
1, the dispersion curves of the traction-free case and of the un
coupled wave systems are shown. Here v = 0.3317 is used for 
the purpose of comparison with Zemanek's work (1972). The 
branches of Pochhammer's equation are denoted by thick 
solid lines which are the numerical solutions of Pochhammer's 
equation. The P, PP, S, and T curves are denoted by solid, 
long dot-dashed, dotted, and dashed lines, respectively. The 
thick dashed line corresponds to h = 0, where the phase veloci
ty is the velocity of the dilational wave in an infinite medium. 
First consider the dispersion curves for real wave numbers. As 
shown in Fig. 1, the branches of Pochhammer's equation pass 
through the intersections of the P and S curves, namely, the 
intersections of the solid and dotted lines approximately. 
Similarly, the branches of Pochhammer's equation are very 
close to the intersections of the PP and T curves (the intersec
tions of the long dot-dashed and dashed lines). 

ImfA,] Reft] 
Fig. 1 The branches of Pochhammer's equation (thick solid lines) and 
the dispersion curves of the uncoupled wave systems for real and im
aginary wave numbers for n = 2, v = 0.3317. The h = 0 line is represented 
by the thick, dashed line. The dispersion curves of the uncoupled 
systems are denoted by solid lines (J„(ri) = 0), long dot-dashed lines 
(J„(h) = 0), dotted lines (Jtfk) = 0), and dashed lines (Jn(k) = 0). 
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Fig. 2 Intricate nature of the branches of Pochhammer's equation for a 
relatively high frequency range for n = 2, v = 0.3317. The intersections of 
the dispersion curves of the uncoupled wave systems are accurate 
asymptotic solutions of the branches of Pochhammer's equations (thick 
solid lines). (Namely, the intersections of solid (Jl,(h) = 0) and dotted 
(J[,(k) = 0) lines and the intersections of long dot-dashed (Jn(h) = Q) and 
dashed Wn(k) = 0) lines.) 

In order to see the more intricate nature of Pochhammer's 
equation, the dispersion curves for a relatively high frequency 
range must be considered. Figure 2 shows the complicated 
nature of Pochhammer's equation for a relatively high fre
quency range and the dispersion curves of the uncoupled wave 
systems. The. branches of Pochhammer's equation pass 
through the intersections of the P and S curves (solid and dot
ted lines) approximately, and they are asymptotically tangent 
to the S curves (dotted) at these intersections. It is seen that the 
intersections are points of inflection of the branches. 

An asymptotic analysis can be carried out in order to see 
how good the intersections of the P and S curves are as the 
solutions of Pochhammer's equation. If the equation 
J'„ (k) =0 for the S curves is substituted into Pochhammer's 
equation, the result is 

e"{h)-n~2^J2-2^ + ̂ =° (35) 

where Q„(h)=Jn_l(h)/J„(h). For large k, the asymptotic 
form of (35) is 

Q„{h)«n « ^ W « 0 . (36) 

This asymptotic form, which is the equation for the P curves, 
is 0(1/X2) accurate. Thus the intersections of the P and S 
curves (solid and dotted) are the solutions of Pochhammer's 
equation to 0(1/X2). 

From Fig. 2, it is also seen that at each intersection of the 
PP and T curves (long dot-dashed and dashed), there are two 
nearby branches which are very close to each other and change 
their slopes abruptly. Note that they never cross each other, 
though it might appear that they do. The higher branch re
mains on the T curves (dashed) before the intersection. The 
slope of the higher branch is asymptotic to the slope of the T 
curve (dashed) just before the intersection, but is asymptotic 
to the slope of the PP curve (long dot-dashed) just after the in
tersection. After the intersection, the branch has a negative 
curvature, and is "ready" to cross the intersection of the P 
and S curves (solid and dotted). In contrast, the lower branch 
approaches the PP— Tintersection from the intersections of P 
and S curves, which is located below and to the left. It is seen 
that the segment of the branch between the two intersections 
has a positive curvature and a slope which is asymptotic to the 

50 

1 n r 1 
0 5 10 15 20 25 

Re[Aj 
Fig. 3 The asymptotic solutions of the branches of Pochhammer's 
equation (thick solid lines) at some special points for n = 2, >> = 0.3317. 
There are two sets of solutions of Pochhammer's equation which pass 
through the long dot-dashed lines (Jn(h) = 0). They are the intersections 
of the long dot-dashed lines with the dashed (Jn(k) = 0) and solid lines 
(Jn(k) + [5 + (1 - «2)/«2]J„ _., <W = 0). 

S curve (dotted) near the P—S intersection and asymptotic to 
the PP curve (long dot-dashed) near the PP-T intersection. 
After the lower branch passes through the intersection of the 
PP and T curves, its slope becomes asymptotic to the slope of 
T curve (dashed), until it approaches the next PP—T 
intersection. 

Even though the intersections of the PP and T curves 
predict the behavior of the branches of Pochhammer's equa
tion and provide approximate solutions to Pochhammer's 
equation, the asymptotic study near such intersections proves 
useful for the further refinement of the approximate solu
tions. For this purpose, J„(h) =0, which is the equation for 
the PP curves, is imposed to Pochhammer's equation. We 
then obtain two forms of asymptotic solutions for large k: 

Jn(k)~0 (37a) 

J„ (k) + [5 + (1 - a2)/a2]Jn_i (k)/k**0. (31b) 

For n = 1, (37a) is the exact solution, and this equation is the 
equation characterizing the T curves (dashed lines). For n = 2 
and c = 0.3317, the solutions of (37a) are 

5.136,8.417, 11.61, . . . , 33.72,36.86,40.01, . . . 

and the solutions of (31b) are 

4.255, 7.699, 11.04 33.49, 36.65, 39.81, . . . . 

As k becomes larger, the solutions of (37a) and (31b) approach 
each other. Thus if one attempted to determine numerically 
the dispersion relation near the intersections of the PP and T 
curves for large wave numbers, one set of the two sets of solu
tions would be missing. For convenience, TA is used to denote 
the curves given by k2

v = Q2 — X2 where k„ is the solutions of 
(376). 

In Fig. 3, in conjunction with the PP (long dot-dashed), T 
and TA curves (dashed and solid, respectively), the branches 
of Pochhammer's equations are plotted. This figure shows 
that the T and TA curves determine very accurately the in
tersections of the branches of Pochhammer's equation with 
the PP curves. Thus in addition to the Tcurves, the TA curves 
turn out to be useful bounds for accurate tracing of Pochham
mer's equation. 

One can observe that the present bounds well approximate 
the points corresponding to local maximum and minimum 
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Fig. 4 The branches of Pochhammer's equation (thick solid lines) near 
the h = 0 line (thick dashed) for n = 2, c = 0.3317. The solid lines 
(JnC>) = 0), long dot-dashed lines (nearly parallel to the solid lines) 
(J„(h) = 0), dotted lines (Jtfk) = 0) and dashed lines (Jn(k) = 0) are the 
dispersion curves of the uncoupled wave systems. 

group velocities in the fi-X plane. This observation may 
prove useful for transient wave propagation, since the main 
contribution to the response comes from the wave modes cor
responding to the local maximum and minimum group 
velocities (Shen, 1988). 

So far, the portion of Sector 3 away from the h = 0 line has 
been considered. Figure 4 illustrates the behavior of the 
branches of Pochhammer's equation near h = 0. The A = 0 
line, which can be regarded as a nominal solution of (25a)1 or 
(28a) is designated by the thick dashed line. As shown in Fig. 
4, the intersections of the branches of Pochhammer's equa
tions with h = 0 approach asymptotically the intersections of 
the h = 0 line and the S and T curves. The behavior of the 
branches at these intersections are similar to those in the por
tion of Sector 3 away from the h = 0 line. The major difference 
is that unlike the intersections of the P and S curves, the cur
vatures of the branches do not change at the intersections of 
h = 0 and the S curves (dotted). After passing through these in
tersections, the branches asymptotically approach the T curves 
(dashed), more accurately, the TA curves (long dot-dashed), 
whose asymptotes are the k = 0 line. Note that at the k = 0 line, 
the phase velocity is the velocity of shear waves in an infinite 
medium. The branches of Pochhammer's equation that pass 
through the intersections of the h = 0 line and the T curves 
(dashed) approach the T curves after they pass the h = 0 line. 

The foregoing analysis has shown that the solutions of the 
uncoupled systems provide proper bounds for the branches of 
Pochhammer's equation. Moreover, these bounds also pro
vide an insight into the modal composition corresponding to 
points on the branches both at and between the intersections 
of the bounds. If the branch segments of Pochhammer's equa
tion are asymptotic to the S curves, for instance, the nature of 
wave motion will be asymptotically equivoluminal. Such ex
amples include the segments between the intersections of the S 
curves with the P and PP curves which are next to each other 
(see Fig. 2). 

To compare the present bounds, which are obtained from 
the solutions of the uncoupled wave systems with the existing 
bounds by Pao and Mindlin (1960), the dispersion curves for 
flexural wave propagation are considered. Figures 5 through 8 

Imft] Reft] 
Fig. 5 The branches of Pochhammer's equation (thick solid lines) and 
the dispersion curves of the uncoupled wave systems for real and im
aginary wave numbers for n = 1, v= 1/3. (See caption of Fig. 1 for mean
ings of lines.) 

show the branches of Pochhammer's equation and the disper
sion curves corresponding to the uncoupled wave system for 
v = 1 / 3 2 . Especially f or n = 1, the intersections of the PP and T 
curves are the exact solutions of Pochhammer's equation. 
Other than this, the discussion for n = 2 is also valid for any n, 
including n = 1. 

Pao and Mindlin (1960) study Pochhammer's equation 
directly. Since Pochhammer's equation does not have un
coupled motion at X = 0, it was difficult to generate simple 
bounds which satisfy the cutoff frequency equation and 
Pochhammer's equation at some points. Since there are no 
such simple bounds, the auxiliary barriers and intersectors had 
to be introduced to construct the bounds themselves. The 
equations for some of the auxiliary curves are not easy to 
solve, though aymptotic solutions may be used. The present 
bounds, however, are relatively easy to compute and can be 
extended in a straightforward manner to general n. 

With the present bounds, the branches of Pochhammer's 
equations can be traced for real wave numbers. The only in
formation required is the cutoff frequencies. The branches 
emanating from the cutoff frequencies that are solutions of 
(10a) can be easily traced near X = 0, because the solutions cor
responding to the T curves have the same cutoff frequencies 
and the branches of Pochhammer's equation are asymptotic 
to the T curves. For the construction of the branches 
emanating from the cutoff frequencies which are the solutions 
of (10&), it can be noted that the slope dQ/d\ at X = 0 is equal 
to zero, unless the cutoff frequencies governed by (10a) and 
(106) coincide. Therefore, these branches can be traced by us
ing the fact that dQ,/dk = Q at X = 0 and by making use of the 
nature of Pochhammer's equation at the intersections of the 
present bounds (which is explained along with Figs. 2 and 3). 
In addition, the fact that the branches of Pochhammer's equa
tion do not pass through the intersections of the PP and S 
curves is also helpful in the construction. 

Though the present discussion has been rather limited to 
real wave numbers, a similar analysis can be carried out for 
imaginary wave numbers. For instance, the points of inflec
tions for imaginary wave numbers are also located approx
imately at the intersections of the P and S curves (solid and 
dotted lines in Fig. 1 and Fig. 5). At the intersections of the PP 
and Tcurves (long dot-dashed and dashed lines in Figs. 1,6), 
two branches of Pochhammer's equation are close to each 
other. 

The dispersion relations for other Poisson's ratios including 
v = 1/2 have been studied, and similar results as in the previous 
examples are obtained. For v= 1/2 and n=\, the dispersion 
relations for large real wave numbers are shown in Fig. 9. In 
this case, the h = 0 line becomes the 0, axis so that the disper-

' For 7 i= l , the line /i = 0 
dJ„(kr)/dr\r=l=0. 

can be interpreted as a solution of The lines used in Figs. 5, 6, 7, and 8 have the same meanings as in Figs. 8. 1, 
2, 3, and 4, respectively. 
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Fig. 6 Intricate nature of the branches of Pochhammer's equation for a 
relatively high frequency range for n = 1, v = 1/3. See caption of Fig. 2 for 
meanings of lines. 

1 1 1 1 1 
0 5 10 15 20 25 

Re[A,] 
Fig. 7 The asymptotic solutions of the branches of Pochhammer's 
equation (thick solid lines) at some special points for n = 1, c = 1/3. See 
caption of Fig. 3 for meanings of lines. 

sion relations in Fig. 9 look like those in Sectors 1 and 2 of Fig. 
4, and Fig. 8. 

5 Conclusions 
Wave propagation in an isotropic solid circular cylinder has 

been investigated. The asymptotic analysis of Pochhammer's 
frequency equation for a traction-free cylindrical surface con
dition is carried out. The wave motion is asymptotically 
equivoluminal for large imaginary wave numbers, and is 
characterized by coupled dilatation and shear. 

The present study shows that there exist uncoupled wave 
systems for two sets of appropriate boundary conditions. 
These uncoupled wave systems correspond to purely dilata-
tional or equivoluminal deformations, and the solutions of the 
uncoupled system provide proper, easily constructed bounds 
for Pochhammer's equation. The bounds can be used to trace 
the branches of Pochhammer's equation for any n, which may 
be otherwise difficult to obtain numerically in general. 

"i i i 
20 25 30 35 

Re[A,] 
Fig. 8 The branches of Pochhammer's equation (thick solid lines) near 
the h = 0 line (thick dashed) for n = 1, >> = 1/3. See caption of Fig. 4 for 
meanings of lines. 

1 1 I 
0 10 20 30 

Re[A,] 
Fig. 9 The branches of Pochhammer's equation (thick solid lines) for 
n = 1 and e = 1/2 (incompressible materials). The dotted lines (J„(/<) = 0) 
and dashed lines (J„(k) = 0) are the dispersion curves of the uncoupled 
wave systems. 
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Bending of Simply-Supported 
Elliptic Plates: B.P.M. Solutions 
With Second-Order Derivative 
Boundary Conditions1 

A higher-order boundary perturbation method (B.P.M.) is formulated to treat a 
class of problems defined in an elliptic domain with associated boundary conditions 
expressed in terms of second-order derivatives. The method is applied to study a 
simply-supported elliptic plate subjected to a central lateral point load. The accuracy 
is investigated and the B.P.M. solution is found to yield highly accurate results for 
moderately elliptic domains. 

1 Introduction 
In this study, we obtain by means of a Boundary Perturba

tion Method, the bending solution to the problem of a simply-
supported elliptic plate subjected to a lateral point load. 

Although the Boundary Perturbation Method (B.P.M.) has 
existed in the literature for some time, a higher-order B.P.M. 
was only recently developed, in general, for the treatment of a 
variety of problems encountered in solid mechanics. Parnes 
and Beltzer (1986a) formulated the method to treat problems 
defined within an elliptic domain, as well as those in a circular 
domain, which contain an eccentric source; general expres
sions required to study these classes of problems were derived. 
The method was applied by Parnes and Beltzer (1986b) to 
problems which do not yield tractable solutions by standard 
analytic methods. The accuracy of the B.P.M. was in
vestigated by Parnes (1987) where it was found that the 
method yields upper bounds to the stiffness of elastostatic 
system. In all of the aforementioned works, the boundary con
ditions considered were of the Dirichlet or Neumann type. 

In this paper, we first extend the method to permit the treat
ment of problems defined in an elliptic domain with associated 
boundary conditions expressed in terms of second-order 
derivatives. Using the methodology of Parnes and Beltzer 
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(1986a) we derive, in Section 2, the general expressions 
necessary to treat this class of problems. 

The resulting relations are applied in Section 3 to investigate 
a simply-supported elliptic plate subjected to a transverse 
point force at the center, a classical problem which appears 
not to have been solved heretofore. The correspond
ing simpler problem of the plate subjected to a uniformly 
distributed load was treated by Galerkin (1923) who, making 
use of elliptic coordinates, derived an exact solution. 
However, while exact, the solution possesses the disadvantage 
of masking the effects of ellipticity: Such effects can only be 
seen from a numerical evaluation of the final relations ex
pressed in terms of the elliptic coordinates. On the other hand, 
the B.P.M. solution to the present problem has the distinct ad
vantage of yielding simple analytic expressions in terms of the 
given ellipticity. These are readily evaluated in Section 4 where 
displacement and moments are presented as a function of the 
ellipticity. 

Estimates of the accuracy and domain of validity of the 
B.P.M. solutions are established in Section 5 based on a com
parison of the B.P.M. solution for a simply-supported ellipitic 
plate under uniform load (as derived in the Appendix) with the 
exact solution given by Galerkin (1923). The B.P.M. is seen to 
yield very accurate results even for domains defined by 
moderate ellipticities. Finally, a comparison of the two solu
tions confirms that the B.P.M. yields an upper bound to the 
stiffness of elastostatic system. 

2 General Expressions 
(a) The Perturbation Scheme. Consider a body defined 

within an ellipse Ce having semi-major and minor radii, a and 
b, respectively. The ellipticity e is given by the relation 

e = a/b — 1, b < a. 

The governing field equation is then 

(1) 

(2) 
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Fig. 1 Geometry of problem 

Fig. 2 Perturbed geometry 

(where r,\p is a polar coordinate system, L a linear differential 
operator, and 4>{r,\l/) a given function), to which there cor
responds a set of boundary conditions on Ce, 

and 

Ar,t)\c=fe(r,t), 

B2[f(rM\c=0-

(3a) 

(3b) 

In the aforementioned equation, fe(r,ij/) is a given function 
on Ce and B2 represents linear boundary conditions contain
ing combinations of derivatives of second order, i.e., 

B2mrM\ce=B2[-^,^-\ (4) 

where n and s denote normal and tangential directions, respec
tively, along Ce (Fig. 1). 

If e is not large, then Ce can be considered as the perturbed 
curve of a circumscribing circle of radius a with points Pe on 
Ce the mapping of P0 on C0 (Fig. 2). The ellipse is thus 
represented as a curve with varying radial distance from 0, 
re = re(i/)'< symbolically, the perturbed relation C0 — Ce may 
be written as 

a~re = re(a,\p,e), (5) 

with re\t=0 = a. 
In applying the B.P.M., we assume that all functions are 

analytic within the domain defined by C0. For a second-order 
scheme, we let 

Fig. 3 

f(r,t) = £ e//(r,tf) (6) 
y = o 

Using the linearity property of L, equation (2) is satisified if 
(0) 

LWM = <Hr,V) 

L[f(r^)] = 0, 

(la) 

7=1,2. (lb) 

We now consider the boundary condition, (3). Since the 
points P 0 and Pe possess the same \p coordinate, the original 
boundary conditions on f(r,\p) I c and B2[f] I c at Pe can be 
expressed in terms of combinations of f(r,\j/) I c* and B2[f] I Co 

on the fictitious curve C0 by means of a Taylor series expan
sion in powers of (a—re) which, in turn, are expressed as 
powers of e for any \j/. Thus 

Pce=f\c0+eBttWc0+e2B$W Co 

and 

where 

B2W\ce=B2V\Co+eB2»\Co+eiB?\ c0 ' 

BfJ)\Co=B^lf^(a^)];i = 0,2;j=l,2;k = 0,l 

(8a) 

(8b) 

(9) 

are, in general, ^-dependent coefficients evaluated on C0, i.e., 
at r = a. 

Since (8a) is valid for arbitrary e, the boundary conditions, 
(3), are satisfied by letting 

/ l c „ = / e > ^ 0 , l c =0 

and by setting 

BtP]f(aM = 0 

BP\f(aM=<> 

•j>0. 

(10) 

(11) 

We turn now to the derivation of the explicit expressions re
quired for the evaluation of the BfJ) coefficients. 

(b) Geometric Relations and Perturbation Expres
sions. We denote by n and s the respective unit vectors in two 
arbitrary orthogonal directions (n, s). Furthermore, let er and 
e^ denote the radial and circumferential unit vectors in the 
polar coordinate system (r, \p) at any point (Fig. 3). Then 
clearly 

n = cos(a-\l/)er + sin(a-il/)ei, (12a) 

s= -sin(a-ip)er + cos(a-\p)exi, (126) 

where a represents the inclination of n with respect to the x-
axis. For the polar coordinate system, with 

d 1 d 
V = e r - ^ + e, (13) 

Journal of Applied Mechanics JUNE 1989, Vol. 56/357 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



the dyadic V V / is given by 

1 1 
V V / = e f e / i f r + ( f^—Tfj) (e re^+e^e r) 

+ (^— f,r + -p SM) HH • 

Noting that 

3 2 / 9 2 / 
2 - n . ( V V j ] T , - ^ - = S ' ( 7 7 / ) - s , 

and substituting (12)-(14) in (15), we obtain 

a 2 / 
a«2 

(14)3 

(15a-6) 

sin 2^ r 1 , , i 

+__JH|_/i,_cos2,^J 
+ (sin2^)2[/,rr--^-/,r]]e

2. (196) 

= cos2(a -1/0/,„- + 2 cos(a - xp) sin(a -1/<) 

x (-7-U -72-/*) +sin2 <«- *) ( - 7 - ^ + ^ ^ w ) <16fl) 

a2/ 
ds2 = sin2(a -\p)frr- 2 cos(a-i/ ') sin(a —1/<) 

Now, it was shown by Parnes and Beltzer (1986a) that the 
radial distance re (i/0 to any point Pe on the ellipse Ce is given 
exactly by 

(17«) 

It is noted that the aforementioned expressions are 
evaluated at points along the curve Ce. Now, as discussed 
previously, all quantities on Ce can be expressed in terms of 
corresponding quantities at the mapped points P0 and C0 by 
means of a Taylor expansion in powers of (r—a). For any 
given function g (representing / , f r, f^, etc. . . ) we have, 
from Parnes and Beltzer (1986a): 

g(re,4>) =ga- (as\n2\pgair)e 

+ sin2i/'[(2 sin2i/--cos2i/')g0ir + a sin2^g0,.r]e
2 + 0(e3) (20) 

wherega=g(a,\p), etc. . . 
Expressing f(r,\p) in terms of the perturbation functions 

U) 
f(r,\p) [6] and expanding the right-hand side of (19) according 
to (20), upon collecting in powers of e and retaining terms up 
to order e2, the following expressions are obtained: 

a2/ 

/•2 = a2[l + (2e + 62)sin2i/']-1 

and that, upon expanding in powers of e and retaining terms 
up to 0(e2), 

+ 0(e3) (176) 

dn2 

a2/ 

\C0 ^ IC0 J 

=A<o)| +r A ( i ) | +B*f»]« 

r e 

/•e=a 1-6 sin2i/< + —- sin2i/'(2 sin2i/<-cos2i/<) 

( /• e-a)2 = « 2 s inV + 0(e3) 

so that 

(17c) 

and 

—=— (i + e sin2^ + — sm22iA + 0(e3). (17d) 
/•e a \ 8 / 

Further, with n the normal to Ce, we have for a given point 
on Ce, 

cos («-!/<) = 1 — — (sin 2i/<)2e2 + 0(e3) 2£2. 

2,7, _ 1 c i n ^ M ^ l 

(18a) 

s in (a -^ )=s in^cos^[2e+ (cos2i/<-3 sin2^)^ ] +0(e3). (186) 

Substituting the appropriate equations, (17)—(18) in (15), 
performing the expansions and again retaining terms up to 
power e2, yields 

a2/ 2 sin 2* f / ^ i 
dn2 \ce ~

f" + ^ — Lf*~\e 

+ [(sin2^)2[-/,„ + ^ - / , , + ^ ] 

sin A\p sin 2^ 1 2 

a ' a2 (. a L a '*^ ' J 

(19fl) 

sin2^ 
+ _ sin 2 ^_/ / j ] e + ( ^ (1-4 cosW,w 

Here, and in all subsequent expressions, derivatives with respect to a variable 
are denoted by a subscript preceded by a comma. 

(21) 

(22) 

(23) 

(24a) 

ds2 \ce 

+ JA<2>|Co + ^ 1 > + J S*2°>]e2 . 

In equations (21) and (22) 

1 T 1 l W 

^F' = [- .sin2^ r +A^(/, ,-^)] 

„„¥£» = [j;in2v!<ja(sin2i/<—— cos2^)/, r r r 

«2 1 
+ — sin 2 ^/ , r m . -2 sin 2 ^ / ^ j 

+ ( s i n 2 ^ ) 2 ( - / , r r + - i - / , r + ^ - / i W ) 

sin 2\W M l 0 1 

0 ¥f> =-^r[sin2
1A(a/,r + 2 / i W - f l / i ^ 

-1 U) 
- a 2 / , r r ) + 2 s i n 2 ^ - « / ^ ) J (25a) 

„*£"> = [ s inVJ2 sin 2tfM ~ (1 + s i n W l ( W 

sin 2ii c la ~)1 W 

+ -2^T1 [V.*+1- Sln 2 W r r " / , ) -2fl/^JJ • (256) 
Bracketed terms, [. . . ] u > . denote that the combination of 3 5 8 / V o l . 56, JUNE 1989 Transactions of the ASME 
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functions and derivatives contained within refer to the func-
w 

t\onf(a,\p). 
For the boundary conditions on / , expressed in the form of 

(3a), equivalent expressions for the functions in terms of / u) 

were derived by Parnes and Beltzer (1986a). For completeness, 
they are repeated here; viz 

/ l c e = / l c 0 + \fl) L +o*i 0 ) ]e+ \f2) I + o*i1,+ o*2
0)]< 

where 

o*F> 

0*p'» = "flsin2^/y> 

sin2!/* (2 sin2^ - cos2i>)f%r + a sin2i///rr 

(26) 

(27a) 

to 

(276) 

We observe finally that all quantities appearing on the right-
hand side of (23)-(27) are evaluated at points P0(a,\p) of the 
circle C0. 

Using (21) and (26) one may treat, by the B.P.M., any 
problem in an elliptic domain which is subject to boundary 
conditions up to second order. 

In the following section we apply the relations developed 
above to obtain the B.P.M. solution for a simply-supported 
elliptic plate subjected to a concentrated force at the center. 

3 B.P.M. Solution for a Simply-Supported Elliptic 
Plate Subjected to a Lateral Force at the Center 

(«) Formulation of the Perturbation Solution. We con
sider an elastic elliptic plate of thickness h with semi-major 
and minor radii a and 6, respectively, and simply-supported 
along the boundary Ce. The material constants of the plate are 
E, the modulus of elasticity and c, Poisson's ratio. The plate is 
subjected at point 0 to a lateral force P acting normal to the 
plane of the plate. 

Denoting the transverse displacement by W(r,\p), the gov
erning equation is 

V*W(r,t) = 
<t>(r) 
D 

where 

(28) 

(29a) 

12(1- , 2 ) ( 2 % ) 

and where V4 is the biharmonic operator and b(r) the Dirac-
delta function. 

The appropriate boundary conditions are then 

4>(r)=P&(r) 

Eh3 

D = -

d2W 
w\Ce=o 

d2W 
- + v • 

ds2 = 0 

(30a) 

(30b) 

where n and s denote the normal and tangential directions, 
respectively, to Ce. 

Following the development of the previous section, we 
postulate W(r,\p) to be of the form given by (6) where W=f 
here and following and also note that Z, = Z) V4 of the previous 
section. 

Using (26), the boundary condition corresponding to (30a) 
becomes 

\wfr + M<°>] + [[»™ + M<'>] + [„„*f + *v*i0)]]e 

+ [™*20) + ^ * 2 0 ) ] ] e 2 = 0. (316) 

We observe, in passing, that the quantities in brackets, 
(. . . j , corresponding to the coefficients B^ and B^ given 
in (9), must vanish for all e. 

(b) The y' = 0 Case 

Following the previous section, W0) must satisfy the 
equation 

(0) 
V*W(r)--

PHr) 
D 

subject to the boundary conditions 

= 0, 

(32) 

(33a-6) 

which, recognized as the axisymmetric case of a simply-
supported circular plate subjected to a central load, has the 
known solutions (Timoshenko and Woinowsky-Krieger, 
1959): 

(0) 

W( r) = A [ - | ± J 1 (a2 - r2) + 2r2 l o g ( - £ - ) ] , (34a) 

where 

A=P/16%D. (34b) 

(c) The Perturbed Solutions, / > 0 . According to (lb), 
U) 

W(r,i//) must satisfy the governing equation 

V 4 H ^ ^ = 0 , 7=1,2 (35) 

subject to the corresponding boundary conditions expressed as 
the vanishing of the coefficients of ei(J= 1 anc= 2) in (31). 

Appropriate solutions to the biharmonic equation are 
(Prescott, 1961): 

WW = C0 + C, r2 + (a„rn + P„r" +2) cos w/< (36) 

where C0, Clt <x„, and /3„ (n= 1,2,3, . . ) are constants to be 
evaluated from the boundary conditions. 

We now proceed to solve sequentially the set of equations 
using the given boundary conditions. 

Case j = 7. Substituting W\ given by (34), in the boun
dary conditions, 

^ 1 ) l c 0 = -o*i0 > (37a) 

»*> + eA<'> I Cfl = - ( „ „ * f + „ * f ) (376) 

and performing the required operations, we obtain explicitly 

WW(a,t) = - 1 ^ - (1 - c o s 2*) 
1 + v 

(38a) 

Wpr(a,^) + v^(a,i/)=2A(\ + v)(l-cos2^). (386) 

From (38), it is clear that the constants of (36), an =/3„ =0 
for n ^ 2 ; the remaining set, (C0, C{) and (a2, /32) are im
mediately determined and lead to the following expression for 
J0»: 

uti-uiiico (!) C 3 + V 
^ o ) + ^ 1 ) + o ^ o ) ) e + ( P F ( 2 ) + o ^ i ) + o ^ o ) ] e 2 = 0 _ ( 3 1 f l ) W(r,t)=Aa2{ j ^ - + P2 + 

1 

Similarly, the boundary condition given by (306) becomes, 
upon using (21)-(22), 
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(\ + v)(5 + v) 

X [(v2 + 2v+ I3)p2 - (v2 + 3)p4]cos 2^j (39a) 
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where 

P=- (396) 

where 7,-, 7, are defined by (43) and where 

C=[16ir(l + v)(5 + v)]-K (45c) 

(416) 

is the nondimensional radial coordinate. 

Case ]=2. The appropriate boundary conditions on P02>, 

^ < 2 ) l c 0 = - (o*i 1 ) + o^0 )) (40a) 

W% + »A<2> I Co = - („„*!» + »**[l)) - („„*20) + v „ * f ) , (406) 

obtained similarly by substituting the known solutions for 
f0o) and W*1', yield the explicit conditions 

W(a,iP) =T{(3V1 + 10P+15)-4(v2 + p +4) cos 20 

+ ( K 2 - 6 J ' + 1 ) cos 40) 

f02>(a,0) + cA< 2 ' (a ,0)=r(-(28i / 3+2e 2 + 55»-78) 

+ 2(18v3 - 42v2 + 72y - 62) cos 20 

- (8K3 - 86i>2 + 99i> - 46) cos 40) 

where 

T=A[4(.l-v)(5 + v)]-1. (41c) 

The constants of (36), upon setting a„ = /3„ =0, « ^ 2 or 4, 
are then readily evaluated. Omitting all algebraic details, the 
expression for W^ becomes 

A/12 r 1 

w™{r,t)=... . . . . hrrrT<*>+7OP2) 
4(1 + p) (5 + v) K 2(1 + v) 

p2 p4 ") 
+ — — (7 ,+7 ,p 2 ) cos 20+ (72 + 72p2)cos 40 

5 + p 2(9 + j») J 

where 

T o = 34 j<3+28 K2 + 105 y - 4 8 

7 o = - ( 2 8 i>3+2v2 + 55 K - 7 8 ) 

7, = - (18 ^ - 1 8 ^ + 101 y + 34) 

7, = 14 y 3 - 4 2 e2 + 65 y - 4 6 

7 2 = - ( 2 f 3 - 4 f 2 + 9 1 f+16) 

72 = 4 v 3 +2 j / 2 - 1 5 J< + 3 4 

The total displacement of the plate is then, by (6), 

W(r^) = J0°> + eJ0» +e2WV> 

where WU) are given by (34), (37), and (42). 

4 Displacements and Moments Along Principal Axes: 
Numerical Results 

Along the principal axes, the expressions for W(J),j= 1,2, 
reduce to 

The moments Mr along the principal axes, obtained from 
the relation, 

1̂1 — i), — - L r \ 
2 

+-y-w.**)]\. - * w 1^=0, -

are given by 

(41a) where 

. * = M°> + eM" + e2M2> 
2 2 

Mf 1 
— - = — — (l + v)\ogp 

P 4-K 

M° l * = 0, -
- =---\(l + v)±[(l + v)(5 + v)]-i 

2 

:[(.l-p)(v2 + 2v+13)-6(v2 + 3)p2]l 

(47) 

(48a) 

(486) 

M2> 1 1 , , r 2(1 - J - ) 
- 5 - ' = - — - ( l - . ) ^ ( 5 + ^ ) - ' ^ ± - 7 ^ - ~ 7 i 

P l<A=o,— 64^ <- 5 + v 
( 1 - K ) 27. + 6 [ ^ . .. 72 ± 9 + c 5 + x 

p 2 + i 2_J2 7 p <] . (48c) 
9 + e J 

Pa2 lv-=o, 
x = C ( - ( 3 + ! / ) ( 5 + K ) + ( 1 + K ) (5 + K)P2 

±l(p2 + 2p+13)p2~(p2 + 3)p*]} 

DW™ I = C f 70 , / 7o , 27, 
Pa 2 I* =0,— 8 U + p Vl + y 5 + p JH 

\ 9 + e 5 + K / 9 + v P J 
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Fig. 6 Moment M x = Mr(\j/ = 0) along x-axis 

At the center point 0 Go = 0), the displacement becomes 
DW0 r 1 

^- = C(5 + v) (3 + v ) ( l - £ )+ (34v3+28v2 

PaL L 2 

+ 105?-48)e2l. (49) 

Numerical results for the nondimensional displacement 
distribution WD/Pa1 along the principal axes are presented in 
Figs. 4 and 5 for two values of Poisson ratio, v = 0 and v = 0.3, 
and for several ellipticity parameters e: e = 0, 0.2 and 0.4. We 
observe, in Fig. 4, that with increasing ellipticity the 
displacements along the x-axis are considerably reduced. 
Moreover, as expected, for all values of e the displacements 
for a plate material with c = 0.3 are smaller than for v = 0. 
Similar behavior is observed for the displacements along the y-
axis as shown in Fig. 5. 

The variation of moments Mr along the x-axis is presented 
in Fig. 6 (a and b) as a family of curves representing several 
ellipticities. We observe that for larger values of v, the 
moments are greater and that in all cases, for increasing ellip
ticity, the moments are reduced. It is noted that in the region 
of load application, \x/a \<\, the moment tends to infinity as 
a logarithmic singularity, reflecting as in the classical case of 
circular plates, the representation of a point load. Similar 
results for the moment Mr along the j>-axis are shown in Fig. 
7. 

The effect of ellipticity is most readily seen in Fig. 8 where 
the ratio Wo,emP/ ̂ o.circ. (representing the displacement of the 
center point of an elliptic plate of semi-major radius a, nor
malized with respect to the corresponding displacement of a 

Journal of Applied Mechanics 

y/o. 

Fig. 7 Moment My = M,{j/ = -IT 12) along y-axis 

circular plate of the same radius) is shown as a function of e 
for several values of v. We observe that the ellipticity reduces 
substantially the displacements. Moreover, it is seen that a 
given ellipticity has a greater effect upon the plate displace
ment for lower values of v; e.g., for e = 0.5, the displacement 
of a plate with v = 0 is reduced by over 60 percent, while for a 
similar plate with p = 0.5, the reduction is 47 percent. 

5 Investigation of Accuracy and Domain of Validity 
of BPM Solution 

In order to investigate the accuracy of the B.P.M., solution, 
we compare the B.P.M. solution for the case of an elliptic 
plate subjected to a uniformly distributed load q (obtained in 
the Appendix) with numerical results presented by Galerkin 
(1923) based on his exact analytic solution. 

The displacements at the center, WQ, calculated from (A%) 
using c = 0.3, as well as those given by Galerkin, (expressed in 
terms of parameters used in this paper) are shown in Table 1. 

Table 1 

t 

0 
0.1 
0.2 
0.3 
0.4 
0.5 

a 

b 

1 
1.1 
1.2 
1.3 
1.4 
1.5 

W/-— 
D 

Galerkin 

0.0641 
0.0519 
0.0424 
0.0343 
0.0279 
0.0228 

B.P.M. 

0.0641 
0.0518 
0.0414 
0.0327 
0.0255 
0.0199 

Percent 
Error 

0 
0.01 
0.10 
4.7 
8.6 

12.7 
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Table 2 

0 
0.1 
0.2 
0.3 
0.4 
0.5 

a 

~b 

1 
1.1 
1.2 
1.3 
1.4 
1.5 

Galerkin 

0.2063 
0.1777 
0.1521 

•0.1320 
0.1138 
0.09867 

Mx/qa2 

B.P.M. 

0.2063 
0.1763 
0.1484 
0.1225 
0.0987 
0.0768 

A Percent 

0 
0.8 
2.4 
7.2 

13.3 
22.2 

Galerkin 

0.2063 
0.1942 
0.1813 
0.1669 
0.1546 
0.1427 

My/qa2 

B.P.M. 

0.2063 
0.1950 
0.1820 
0.1671 
0.1503 
0.1317 

A Percent 

0 
0.4 
0.4 
0.1 
2.9 
7.7 

wo,eLtjp. 
W, 'o.circ. 

0 . 2 -

0 O.I 0.2 0.3 

Fig. 8 Center displacement: effect of ellipticity 

0.4 0.5 

A comparison of the results reveals that the B.P.M. solution 
always yields lower bounds for the displacements. Further
more, it is possible to conclude that for small ellipticities, 
e <0.25, the results are accurate to within an order of 1 per
cent. Moreover, for relatively moderate ellipticities, e = 0.5, 
one observes that the second-order B.P.M. yields quite good 
results, the accuracy being 12.7 percent. 

The moment Mx and My at the center (x=v = 0), calculated 
from equations (A9), as well as those given by Galerkin 
(e = 0.3), are shown in Table 2.4 

A comparison of the B.P.M. results with Galerkin's exact 
solution shows that the B.P.M. moments for My are more ac
curate than the displacements, while the Mx results are of a 
considerably lesser accuracy. Nevertheless, from both Tables 1 

Results from Galerkin (1923), are presented using the notation of this paper. 
It is noted that, as opposed to this referenced work, Mx=Mr(4i = 0), 
My=Mr(^ = r/2). 

and 2, we may conclude that for ellipticities e< 0.3 the B.P.M. 
solution yields an accuracy better than 8 percent. 

Finally, upon comparing the resulting displacements, the 
assertions of the previous study by Parnes (1987) are con
firmed; namely, that the B.P.M. solution always yields lower 
bounds to the true displacements. 
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A P P E N D I X 

B.P.M. Solution for a Simply-Supported Elliptic Plate 
Subjected to a Uniform Load 

We treat here the case of an elliptic plate subject to a 
uniform load q in order to provide a comparison with the ex
act analytic solution given by Galerkin (1923). The develop
ment is parallel to that of Section 3. 

For this problem, (28) to (33) remain the same with the ex
ception that here $(/•) = q so that (32) becomes 

V 4 ( ' ) = ! -
(A\) 

The 7 = 0 case, again recognized as that of a simply-
supported circular plate of radius a, possesses the known solu
tion (Timoshenko and Woinowsky-Krieger, 1959) 

(0) 

W(r) -£[''- — — — p 2 + -
1 + c 

5 + v 

\ + v J 
where 

K = q 

(Ala) 

{Alb) 

and where p=— . 
a 

They>0 must then satisfy the biharmonic equations, (35), 
whose solution is given by (36). 

Case/ = 1. Substituting 042) in the boundary conditions, 
(37), the explicit boundary conditions become 

(i) 
W(a^) = 

16(1 + v) 
(1 - cos 2i/<) (Ala) 
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16 tfz 

Substituting (36), and setting C2 = 0, a„ = /3„ = 0, n ^ 2, by a 
simple matching procedure, the nonvanishing constants, C0, 
Cu a2, /32 are determined, from which 

(1) K ( 
W ( r ^ =WJ. X ~ (5 + " > + <3 + " ^ 

32(1+i>) L 

+ - Uu2 + 4v+l5)p2-(v2+2p + 5)p4]cos2\p] (A4) 

Case y = 2. In a similar manner, substitution of (A4) in 
(40) yields the explicit boundary conditions 

(2) K(5 + v) ~' r 
» W ) = ' ' . (3c2 + 22y + 75)-4( y

2 + 5y + 20) 
12o(l + I>) v. 

Xcos2i / '+(v 2-2v + 5)cos4i/'j (.45a) 

W®(a,+) + vAV>(a,+) = - ^ V ) ' (2(39^ + 22 . -25) 
128(1 +p)«r 

-(39i>2 + 22><-25)p2] + 
5 + y 

[ -(3e 3+24e 2 + 47j' + 210)/o
2 

+ (K3 + 4i>2 - 43c + 10)p4] cos 2^ + 
9 + y 

[(v3 +10K2 

- 103 v + 40)p4 - (3 v2 - 90K - 5)p6 ] cos 4\pJ. 

The final expression then is 

W(r,\l>) = W<® + W<»e + WV>e2 + 0(e 3 ) , 

(46) 

(Al) 

where WU), given by (A2), (A4), and 046), reveals a solution 
dependent on cos 2 n\p (« = 0, 1,2) having coefficients which 
are functions of r and v. The displacement at the center point, 
under the load, yields the simple expression 

Wn=
 K^tV) ,„ [2(5 + K)2(1 + v) -4 (5 + K)2(1 + v)e 

128(1 + v)2 

+ (3c3+64.2 + 119 + 50)e2]+0(e3). (AS) 

The moments Mx and A/,, at the center point (r = 0), ob
tained by substituting (A2), (A4), and (A6) in (46), are the 
following: 

rr2 

M„ <7<r [3 + v + M?>e+M?'>e2] (49) 

+ 4 ( - 3K2 - 12K2 + 13c + 30) cos 2^ 

+ 2 ( 6 K 3 - 1 5 K 2 - 4 8 K - 3 5 ) C O S 4 I / ' ) (A5b) 

which permit evaluation of the nonzero constants, C0, Clta„, 
/3„, n = 2 and 4; the resulting expression for W^2) becomes 

K(5 + V)-< ( 1 (2) 
W(r^): 

128(1 + v) 

v) ~' r i 
[ (3K 3 +64K 2 + 119K + 

+ v) <. 1 + K 
50) 

where 

M<» = - [(3 + v) ±(1 - v) (5 + y)- ' ( l + v) " V + 4K + 15)] 

0410a) 

w < 2 ) = ( 1 + y ) -1(5 + ^)- i [39„2 + 2 2 . 

- 2 5 ± 2 ( 1 - K ) ( 5 + K ) - ' ( 3 K 3 + 2 4 K 2 + 4 7 K + 210) ] . 04106) 
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A New Boundary Equation 
Solution to the Plate Problem 
A new boundary equation method is presented for analyzing plates of arbitrary 
geometry. The plates may have holes and may be subjected to any type of boundary 
conditions. The boundary value problem for the plate is formulated in terms of two 
differential and two integral coupled boundary equations which are solved 
numerically by discretizing the boundary. The differential equations are solved us
ing the finite difference method while the integral equations are solved using the 
boundary element method. The main advantages of this new method are that the 
kernels of the boundary integral equations are simple and do not have hyper-
singularities. Moreover, the same set of equations is employed for all types of 
boundary conditions. Furthermore, the use of intrinsic coordinates facilitates the 
modeling of plates with curvilinear boundaries. The numerical results demonstrate 
the accuracy and the efficiency of the method. 

1 Introduction 
The bending problem of thin elastic plates of arbitrary 

geometry using the boundary integral equation method with 
numerical integration of the boundary integral equations has 
been treated by several investigators. Some of them, (e.g., 
Segedin and Brickell, 1968; Jaswon and Maiti, 1968; Maiti 
and Chakrabarty, 1974; Irschik and Ziegler, 1981) have 
developed boundary integral equation methods suitable for 
plates of certain geometries and certain boundary conditions. 
Others (e.g., Niwa et al., 1974; Bezine, 1978; Stern, 1979; 
Costa and Brebbia, 1984; Guoshu and Mukherjee, 1986) have 
developed general integral formulations and obtained 
numerical results by solving two coupled integral equations in
volving boundary quantities having direct geometrical and 
physical significance (displacement, slope, bending moment, 
and effective shear force on the boundary). These approaches 
allow the treatment of plates whose boundary has corners and 
whose boundary conditions are mixed. However, they lead to 
boundary integral equations with complicated kernels which 
exhibit higher-order singularities (hypersingularities) and for 
this reason their numerical solution requires a special cumber
some treatment. 

In this investigation a new boundary equation method is 
presented for analyzing plates subjected to transverse forces 
and having any type of boundary conditions uniform or mixed 
(i.e., clamped, simply-supported, free, guided, elastically 
restrained). The plate may have holes and its boundary may 
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have corners. In this method the deflection and the stress 
resultants of the plate are established from four boundary 
quantities, i.e., the deflection, its Laplacian and their normal 
derivatives. These quantities are established by solving on the 
boundary four coupled equations, two differential and two 
singular integral. 

The coupled boundary equations are solved numerically us
ing the finite difference method for the differential equations 
and the boundary element method for the integral equations. 
The method is easily programmed and is well suited for 
computer-aided analysis. The computation time is reduced 
considerably by converting the domain integrals which appear 
in the integral equations into boundary line integrals. 
Numerical results are presented for several plates (rectangular, 
circular, semicircular, triangular, elliptical) having various 
boundary conditions (uniform or mixed). The numerical 
results are compared with those obtained from analytical and 
other BEM solutions. Moreover, results are presented for a 
plate of composite geometry with mixed boundary conditions. 

One of the main advantages of this new boundary equation 
method is that only four different kernels appear in the in
tegral equations which are simple in form, and those which are 
singular have either a logarithmic or a Cauchy-type singularity 
i.e., the singular line integrals are single- or double-layer 
potentials which are readily integrated. Moreover, the use of 
intrinsic coordinates facilitates the modeling of plates with 
curvilinear boundary. 

2 Formulation of the Boundary Value Problem 

Consider a thin elastic plate of thickness h, occupying a 
two-dimensional region R in the x-y plane, bounded by a curve 
C0. The region may be multiply connected, i.e., it may have M 
holes bounded by the curves C1; C2, • . . CM (see Fig. 1). 
Moreover, the curves C, (/' = 0, 1, . . . M) may be piecewise 
smooth, i.e., they may have a finite number of corners. 

When the plate is subjected to a transverse loading /(P), its 
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/$$^^lP" f ll f̂ Ô --̂  |>/\u\\\\" 

V \ \ \ /\\x>v-~~"w sC 

?' 

\ \ P x' 

Co 

(c) free if 

= 0, a2 = l, a 3 = 0 , 0,=O, 02 = 1, 03=O (6c) 

(d) guided if 

a, =0 , a 2 = 1, a3 = 0, 0, = 1, 02 = O, 03 = O. (6d) 

Notice that at points where the boundary conditions change, 
the functions ak, 0k may be discontinuous. 

Using intrinsic coordinates (Katsikadelis, 1982) the 
operators (4) may be written as 

M--

[ 3 , d / d2 d \ 
V=-D\ V 2 - ( ^ - l ) — ( K—) 

Idn ds \dsdn as/ 
(lb) 

0 x 

Fig. 1 Two-dimensional region R occupied by the plate 

deflection w(P) must satisfy the following differential equa
tion (Timoshenko and Woinowsky-Krieger, 1959) 

V4w=f(P)/D, PeR (1) 

where D=Eh*/12(1-v2) is the flexural rigidity of the plate 
and V4 is the biharmonic operator defined as 

34 

(2) 

where K=K(s) is the curvature of the boundary. For rec
tilinear boundary (^ = 0, t=s) equations (7) become identical 
in form to equations (4). 

Using relations (7) the boundary conditions (3) can be writ
ten as 

a](s)Q-Da2(s)\^-(v-l) [*• ( • 

dX 

ds V ds 

d2Q 

-K 

•,)] 

ao y 
ds ) \ 

= 03(s) 

= a,(s) (8) 

(9) 

. 34 „ a4 

?4 = -1-2 • dx4 dx2dy2 dy4 ' 

Moreover, the deflection w of the plate must satisfy the 
following boundary conditions (Katsikadelis, 1982) on the 
boundary C=Ufi0 C,. 

ai(p)w + a2(p)Vw = a3(p) 

Pi(P) 
dw 

~dn~ 
+ 02(p)Mw = 03(p) 

(3a) 

(3b) 

where the functions ak and 0* (k= 1, 2, 3) are defined on the 
boundary C as a*, (p) = a'k (p), fik (p) = 0i-(p) whenpeQ; os.'k 

(P)< P'k (P) a r e specified functions on C,. The operators M and 
V are defined as 

M = - D | v 2 + (</-i) 
dt2 J 

a a / a2 \ 
Is \dndt) 

(4a) 

(4b) 

^(s)X-DP2(s) [*+(*--1) l - ^ + KX) 

where the following notation has been introduced 

Q = w(s),X= dw(-s\ $ = v 2 w ( 5 ) , * = — V 2 w ( s ) . (10) 
dn dn 

Equations (8) and (9) constitute two coupled differential equa
tions on the boundary C of the plate with respect to the 
unknown boundary functions fi, X, $, and ^ . 

3 Integral Representation of the Solution 

The integral representation of the solution w(P) of equa
tion (1) is readily obtained using the Rayleigh-Green identity 
for the biharmonic operator (Katsikadelis and Armenakas, 
1984b) as 

w(P) = \\RV(P,Q)f(Q)doQ-D\c[v(P,q)-^-V2w(q) 

-w(<?) ~V2v(P,q)- dVif'gK2w(q) 
dnq dnq 

In the preceding relations d/dn and d/dt denote differentiation 
along the outward normal and the tangential direction, respec
tively, while d/ds denotes differentiation with respect to the 
arc length of the boundary. Notice that the bending moment 
Mn and the effective shear force V„ acting on the boundary of 
the plate are given as 

where 

dw(q) 
+ -^LV2v(P,q)]dsq 

dnq 

f ( ^Q) = - g ^ 2 l n / - , r = \P-Q\ 

(11) 

(12) 

M„ =Mw 
V„ = Vw. 

(5a) 
(5b) 

Equations (3) express the most general case of linear 
boundary conditions for a plate. The conventional boundary 
conditions are obtained from equations (3) by specifying ap
propriately the functions ak and $k. Thus, a portion C of the 
boundary C is 

(a) clamped if 

a, = 1, a2 = 0, a3 =0 , 0, = 1, 02 = O, 03 =0 (6a) 

(b) simply-supported if 

a, = 1, a2 =0, a3 =0 , 0, =0 , 02 = 1, 03 =0 (6b) 

is the fundamental solution to equation (1), i.e., a partial 
singular solution of equation 

V4v = b(P-Q)/D (13) 

where d(P— Q) is the Dirac Delta function; Q is the field point 
and P is the source point. Note that the two-point function 
v(P,Q) is symmetric with respect to the points P and Q and, 
thus, their role can be interchanged, v(P,Q) = v(Q,P). 

In the aforementioned equations, points inside the region R 
are denoted by capital letters (P or Q), while points on the 
boundary C are denoted by small letters (p or q). Moreover, 
the subscript in the differentials dsq or daQ and in the normal 
derivative d/dnq indicates the point which varies during in
tegration or differentiation. 

Substituting equation (12) into equation (11), carrying out 
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the differentiations and using notation (10), the integral 
respresentation of the solution of equation (1) can be written 
in the following form 

w(P) 

\ [A1(/-)Q + A2(r)^+A3(r)* + A4(/-)^]rfs (14) 
1 

~~2T 

where the kernels A, (r) (/'= 1,2,3,4) are given as 

COSlp 
A,(r)= — A2(r) = lnr+1 (15fl,6) 

(15c,rf) A 3 ( / - )=—— (2r\nr + r)cos<p A4(r) = ——r2\nr. 

Notice that for the line integral r = \P—q \ , while for the do
main integral r = \P — Q | , P, Q€R, qdC; (p = r,'n is the angle 
between the direction of r and the normal n to the boundary at 
point q. 

The kernels A,- (/•) (/'= 1,2,3,4) are known functions. Hence, 
if the boundary quantities 0, X, $, and ^ are established, the 
deflection of the plate w(P) can be computed from equation 
(14). 

4 Boundary Integral Equations 

The boundary quantities Q, X, *, and * are related by the 
two differential equations (8) and (9). Consequently, two 
more equations are required in order to be able to establish 
them. In this section two boundary integral equations, relating 
the boundary quantities, are derived from the integral 
representation (11) by employing the procedure presented in 
(Katsikadelis and Armenakas, 1984b). 

The first boundary integral equation is obtained by letting 
point P in equation (11) approach a point p on C and by tak
ing into account that in the limit as P—ptC, the line integral 
with kernel d/dn V2f exhibits a discontinuity jump equal to 

f 9 
lim -—V 2 v(P,q)w(q)ds 
P-P Jc dn v 

V2 v(p,q)w(q)dsg=-
2ir — a 

2irD 
-w(p). (16) 

Thus, the first boundary integral equation is 

1 ' AfrVde aO 
D \)R 

•\c [A,(r)Q + A2(r)X+A3(/-)*+A4(/-)¥]cfc (17) 

where r = \p — q \ p, q€C and a is the angle between the 
tangents at point p (see Fig. 1). For a point p where the 
boundary is smooth a = ir. 

The second boundary integral equation is obtained by ap
plying the operator V2 on both sides of equation (11) and, 
subsequently, letting point P approach a point p on C. Thus, 
by taking into account that V4 v(P, q) = d/dnV*v (P,q) = 0 
and using equation (16) the second boundary integral equation 

«*=-^-J{A 2 ( r lA/ff-J c [A,(r)* + A2(r)*]rfy. (18) 

The boundary differential equations (8) and (9), together 
with the boundary integral equations (17) and (18), constitute 
a set of four simultaneous equations for the unknown bound
ary quantities Q, X, *, * . Notice, that the boundary condi
tions affect only the boundary differential equations through 

fa P N T 5 ? ^ ^ / Pj-1 1—- ° f H O L E / J i 

1 > > ^ C 1 / 
, N0+ N1 , / 

Fig. 2 Discretization of the boundary 

the parameters ai and bt (;'= 1,2,3) which, in general, could be 
functions of the arc length s. The two boundary integral equa
tions are not affected by the boundary conditions. Thus, any 
type of boundary conditions (uniform, mixed, elastic support) 
can be treated in a unified manner by solving the same set of 
boundary equations. For clamped or simply-supported plates 
it is possible to reduce equations (8), (9), (17), (18) to two 
boundary integral equations by eliminating two of the 
unknown boundary quantities (Katsikadelis and Armenakas 
1984a, 1984b). However, this can not be done for plates with 
free or guided boundaries. In these cases elimination of the 
boundary quantities yields two boundary integrodifferential 
equations whose solution involves considerable difficulties. 

5 Numerical Solution of the Boundary Equations 

The boundary integral equations (17) and (18) are solved 
numerically using the boundary element method, while the 
boundary differential equations (8) and (9) are solved 
numerically using the finite difference method. 

In the boundary element method, the boundary C of the 
plate is divided into a finite number of segments referred to as 
boundary elements. On each element two approximations are 
made. The geometry of the element is approximated by a 
straight line, or by a parabolic arc, and the unknown bound
ary quantities are assumed either to be constant or to vary 
linearly or parabolically on the element. In this investigation, 
each element is approximated by a parabolic arc and the 
boundary quantities are assumed to be constant on the ele
ment. This approximation of the boundary reduces con
siderably the error induced by the geometry of the curved 
boundary (Katsikadelis and Sapountzakis, 1985; Katsikadelis 
and Kallivokas, 1986). 

In the finite difference method the derivatives in the bound
ary differential equations (8) and (9) are approximated by 
unevenly-spaced, central finite difference schemes, that is 

ds Ji 
-sfei- + (s2-s}_i)gi + sf-lgi. 

Sjgi_ , - (S,_i + Si)gi + S,_igi+ i 
= 2 

(19a) 

(19b) 
\ ds2 / / s,_,s,(5,-i+*/) 

where gt stands for a boundary quantity at the nodal point i 
and st_lt St are the distances along the boundary between the 
nodal pointsp :_(, p: a n d p h pi+l, respectively, (see Fig. 2). 

Discretization of the boundary C into N elements and ap
plication of the aforementioned technique yields the following 
set of 4N linear algebraic equations in 4JV unknowns 
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E (AU)UQJ+ E M.2MO 
J = / - l , y = i - l 

+ (4 1 4 ) s ¥, = (*.)/ 
y+i 

£ M21)„Q, + ( 4 W + M23),,*, = (B2), 

N 

E [ ( ^ . V V + M B ^ + M J J ) ^ , 

+ ( / l3 4)^ .] = (£3),. 

N 

E M43);/*/ + M«4)v*y = (^4), (' = 1,2, 
y = i 

TV). 

(20a) 

(206) 

(20c) 

(20cO 

Notice that in equations (20a) and (206) the subscript j may 
take the valuesy = 0 orj = N+l. Hence, these values must be 
replaced by j = N and j — 1, respectively. 

The coefficients (Akl)y, and the constant terms (B*), 
(Ar,/= 1, 2, 3, 4 and i,j - 1,2, . . . N) are given by the follow
ing relations 

(^ii) , \ /- i = - ( « 2 ) A ( -
dK, 

ds 
Lsi + 2Ki) 

(An)u= (a1),/[(c-l)Z>e,] + (a2),(5,_1 + s,) 

X [(*/- -*/) ds 
— +2K: •-] 

/ die, \ 

( ^ n ) u + i = - ( « 2 ) , ^ i - i ^ — ^ - Si-\+2Ki) 

(Al2)u_x=2(a2)isj 

(Al2)ii= -2(0i2)i(.Si_i+Sl) 
(Al2)u+1=2(a2),si_l 

M,4)f l=-(«2) / / [ ("- l )e / ] 

042> );,,-! = -2(/32),S; 
(^21),=2(/32),(5,_1+5,) 

( ^ 2 i ) v + 1 = - 2 ( / 3 2 U - , 

(^22)« = (0i)i/K»'- 1 ) ^ , ] - (02 W e , 

Ĉ 23)« = - (/»2)//[(»— De,] 

(^3i)(/=-].^w/9+a5(/ 

(Au)ij = J. (to'"-? + ! )*? 

(^33)// = - j J ^ (21nr/9 + Drfwj, 

(A34)ij=-j).rllnrigdsq 

(^43)(/ = (y43l)y 

(^44)(/=(^32)v 

(*1), = («3VPte/0'-l)] 
(2J2)/ = C83),/[Z)e,(i.-l)] 

(Bi)i=^\\RrjQ\nriQf(Q)doQ 

(21a) 

(216) 

(21c) 

(21d) 

(21c) 

(21/) 

(21*) 

(21/0 

(210 

(21/) 

(21*) 

(210 

(21/w) 

(21n) 

(21o) 

(21/>) 

(21?) 

(21r) 

(21*) 

(210 

(21«) 

(21 v) 

where ei = l/[si_1si(si_i+si)]; riQ = \pi-Q\\ QOi; riq 

= \Pj — q\ , <5r€/'-element; o>iq = is the angle between the x-axis 
and the line rtJ (see Fig. 2); (a*.), and (0k)j are values of the 
functions ak (s) and fik (s), respectively, at point /?,•; the sym
bol J,- indicates integration over the/'-element. The integrals in 
the expressions for the coefficients (A3l)y 0431)y and (A32)y 
have been obtained using the relation cos<pds = rdw 
(Katsikadelis and Armenakas, 1984b). 

In matrix form, equations (20) are written as 

(22) 

"A„ 

A21 

A3I 

0 

vhere 

XT 

* r 

* r 

B? 

A12 0 A14 

A22 A23 0 

A.32 A33 A34 

U -™43 ^ 4 4 

' Q 

X 

* 

* 

= [0, Q2. . . QN] 

= [X, X2 . . . XN] 

= [ $ , * 2 . . . $w] 

= [*,*2 . . . * „ ] 

= \(Bk)x(Bk)2 . . . (Bk)N], k 

= 

B, 

B2 

B3 

B4 

= 1,2,3,4. 

(23) 

In deriving equations (20a) and (206), the derivatives at the 
nodal points have been approximated by unevenly-spaced cen
tral differences. However, the function X=dw/dn is discon
tinuous at corner points and, thus, the derivatives at the nodal 
points before (after) the corner are approximated by backward 
(forward) differences. In this case equation (20a) is replaced 
by 

E 
. /='•-1 

(An)ijUj+ (AX2)jj±3Xj±3 

+ (A i2)ij±2Xi±2 + (A \2)jj±\Xi±! 

+ (-412)ff*,+ M 1 4 )„* , = 0 (24) 

where 

(A12)„ = 2(a2)ih2h3(h2 + A3)(3A, + 2h2 + hjef/e, (25a) 

(^i2)i./±i = -2(a2)ihi(hi +h2)(hi +h2 + h3) 

x(2hl+2h2 + h3)ef/ei (25b) 

<,An)i<i±2 = 2(a2)ihx(h2 + h3)(hx + h2 + h3) 

x(2hx+h1 + h3)e*[/ei (25c) 

(Ax2)u±3 = -2(«2)/A,A2(A, + h2)(2hx+h2)ef/ei (25d) 

ef= \/\hxh2h3(hx + h2)(h2 + h3)(hx +h2 + A3)]. 

In equations (25) hx=Sj_ s,_2, h3=s:_3 or hl=si, 
^2=5;+i> hi=si+2 depending on whether backward or for
ward differences are used, respectively. 

Special care must be taken at the corner points of the 
boundary when the deflections are not prevented (free corner). 
In this case the replacement of the twisting moments along the 
boundary by a distribution of equivalent couples of vertical 
forces gives rise to fictitious concentrated corner forces which 
affect greatly the deflections and the stress resultants. This 
shortcoming of Kirchoff's plate theory is overcome by impos
ing the additional corner condition 

(Tw)+ -(Tw)~ = 0 (26) 

where Tw is the twisting moment along the boundary which, 
using intrinsic coordinates and notation (10), can be expressed 
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Tw -D(l-V)(-
d2w 

dsdn 
-K-

dw 

ds 
) = Z 3 ( l - , ) ( -

dX 3Q 
-K-dn ds 

(27) 

Substituting relation (27) into (26), the corner condition may 
be written as 

dX\,., / dX\, , / . \ 3Q 
(-£•)•*>-(-£•)<-(*••-*-')- ds 

(28) 

Denoting byp,- andpi+l the nodal points adjacent to the cor
ner, and approximating the derivatives of X by forward and 
backward differences and the derivatives of fi by central dif
ferences, condition (28) is expressed as 

j=i+2 j=i+3 

j=i-l j = i-2 
(29) 

(30) 

where 

ci-l=Kis,/[si_l(.s,_l+si)] 

Ci=-Ki(s,-si_l)/(si_iSi)-Ki+1/lsi(si+si+l)] 

c,+i = -^/S(-i/[J/(s,--i +Si)]+Ki+l(si+i -Si)/(s,si+l) 
C/+2 = Ki+[Si/[Si+ ! (Sj +Si+l)] 

di-1 = -S,-l/[S,-2CS/-2 + */-l)] 

</,-_, =(5 , -_ , +S , -_ 2 ) / ( j , -_ 2 J ; _ , ) 

di = - (S;_2 +2s,-_! )/[Si_l(S,_2 +S/_i)] 

di+l = -(2si+l+si+2)/lsl+i(Sn_t +si+2)] 

di+1 = ~si+l^[si+z(si+l +si + 2)]-

Condition (29) represents an additional equation which 
must be satisfied simultaneously with equations (22). Thus, 
the number of equations which must be solved exceeds the 
number of unknowns. To overcome this difficulty, it is as
sumed that an unknown concentrated force acts at each free 
corner of the plate. These forces are evaluated by requiring 
that the results satisfy the additional equation (29) at each 
corner. 

For plates with clamped or simply-supported boundaries, 
equation (22) can be simplified as follows: 

any of the known numerical techniques for the evaluation of 
line integrals. In this investigation the curved boundary is ap
proximated by a parabolic arc passing through its nodal and 
extreme points and its value is computed using eight-point 
Gauss quadrature. However, when i-j the argument r 
vanishes for q=pt and, consequently, the line integral (21/?) 
exhibits a logarithmic singularity. In this case it is evaluated 
using the technique presented in (Katsikadelis and 
Armenakas, 1985). 

In evaluating the domain integrals (21 u, v) we distinguish 
the following four cases of loading: 

(a) The plate is subjected to a concentrated load P at a 
point Q0. In this case, the loading function f(Q) can be 
represented as 

AQ)=P8(Q-Qo)- (33) 
Using relation (33) the values of the integrals (21 u, v) are 

(.Bih = ^Q\nriQo, (fi4); = - £ - (\nriQo + 1) (34a,b) 

where riQo = \p-,-Q0\ . 
(b) The plate is subjected to a line load p(s) distributed 

along a curve L*in R. In this case, the domain integrals can be 
computed using equations (34a, b) from the following line in
tegrals along the curve L* 

(B4)i = - j j - j L , P(Q) (lnr,G + l)dsQ 

(35a) 

(35b) 

where rIQ =\p,-Q\, QtL*. 

(c) The plate is subjected to a uniform or a linearly varying 
load distributed over an area R* <=Rof the plate bounded by a 
curve C*. In this case, which is very usual in engineering prac
tice, it is V 2 / = 0 and the domain integrals can be readily con
verted into the following line integrals on the boundary C* 
(see Appendix) 

(B3),-
l L !><*> d »i(/-<g) 

•u{(rla) 
df(q) 
dn„ 

dsn (36a) 

(a) Clamped Plate. In this case a{ = /3, = l , a 2 = a3 
32 = /33 = 0. Consequently, A12 = A14 = A21 = A22 = B, 
B, 0 and equations (22) reduce to 

12 = 0, X = 0, * B3 

B„ 
(3\a,b,c) 

(b) Simply-Supported Plate. In this case a! = /S2 = 1, 
a2 = a3 = (3] = (33 = 0. Consequently, A12 = A14 = B, = 
B2 = 0 and equations (22) reduce to 

fi = 0, fA,, A„ 0 1 T X l f 0 ~ "A22 

A32 

_A42 

A23 

A33 

A43 

0 

A34 

A44 _ 

X 

$ 

* 

B, (32a,b) 

In all other cases a 4Nx4N system of simultaneous linear 
algebraic equations must be solved. However, it is apparent 
from equations (21) that the matrices Akl (k=l,2 1= 1,2,3,4) 
are very sparsely populated and, thus, the solution of the 
system can be drastically simplified. 

6 Evaluation of the Boundary and Domain Integrals 

With the exception of the line integral (2In) when i=j, all 
line integrals (21m,o,p) are regular and can be evaluated using 

, „ , I f [ , du2(rig) . .mqY\. 
(36b) 

where riq= \Pj — q\, q£C*. The functions ux (r), u2 (r) are 
given in the Appendix. 

The substitution of the domain integrals by line integrals 
drastically reduces the required computer time. 

The curves L* or C* are discretized into a finite number of 
parabolic elements and the line integrals (35a, b) or (36a, b) 
are evaluated on each element. The results are added to yield 
the values of the integrals o n l * o rC* . 

(d) In the general case where the loading is given by an ar
bitrary function/(Q) over R*, the conversion of the domain 
integrals into boundary line integrals is also feasible using the 
Rayleigh-Green identity (see Appendix). In this case 

(£3), = « # , + — j c > [Ai(rig)u(q) + A2(riq) 
du(q) 

+ A3(/-/<?) V
2u(q) + A4(riq)—V2u(q)]ds, 

(B4)i = e(V2u),+~ j c > [A,(^)V2«to) 

+ A2 ir,q)-z— V1u(q)]dsq on„ 

(31a) 

(31b) 
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where riq = \pt — q |, q£C* and u is a particular solution of DA(r) = 0, D5(r) = 0 
equation V 4 H = / ; e = is given by equations (A9) of the Appen
dix. A shortcoming of this approach is the need to establish 
the function u. A procedure of doing so is given in the Appen
dix. Moreover, the function u for certain loading functions/is 
tabulated in the Appendix. 

For an arbitrary function/(Q) the domain integrals can be 
also evaluated using the equally efficient technique developed 
in (Katsikadelis, 1989). 

cos<p sin2cosin<p 2cos2o)sin<p 
£,(/•) = , E2(r) = , E3(r) = 

cos(co-<o) sin(u-<p) 
E4(r) = ——-. , Es(r) = . (41) 

7 Evaluation of the Deflections, the Reactions, and 
the Stress Resultants 

When the matrices A /m, B^ (kl = 1,2,3,4) are established, 
the system of simultaneous algebraic equations (22) is solved, 
and the values ft,, Xj, $jt and ^ - of the boundary functions 
fiCs), X(s), $(5), and V(s) are obtained at the nodal points pj. 
These values can be substituted in the discretized form of 
equation (14) to yield the deflection w(P) at any point P of 
the plate, and in equations (5) to yield the reacting force V„, 
and the bending moment M„ along the boundary of the plate. 
The derivatives involved in equations (5) are computed using 
numerical differentiation. 

The bending moments Mx, My, the twisting moment Mxy 

and the shearing forces Qx and Qy at any point of the plate are 
given (Timoshenko and Woinowsky-Krieger, 1959) in terms of 
the deflections as 

Mr -D(. 
d2w 

l)xT - + v • 
d2 w 

dy2 ) My=-D(. 
d2w 

~df 
-+v • 

Mxy = 

Qx = 

-M=D(\-v) 
d2w 

dxdy 

d2w \ 

"to2/ 
(38a,6) 

(38c) 

-D-— v 2 w Qy=-D— V2w. (38d,e) 
dx y dy 

The second- and third-order derivatives of the deflections in 
equations (38) may be evaluated from the computed values of 
the deflections using numerical differentiation. However, the 
accuracy of the results improves and the computer time is con
siderably reduced when the following combinations of 
derivatives in equations (38) are evaluated by direct differen
tiation of relation (14): 

1 
2TT.D 

llW'-^l IWQ+DW 

+ £ / ( r ) * + fl,(r)*]rfy (/= 1,2,3,4,5) (39) 

where 

d2w d2w d2w d2w d2w 
"1 = i..7 + -,..•> > " 2 = ^ 7 5 ^ 7 5 - . d3 dx2 dy dx2 dy ,2 • " 3 " dxdy 

(40) 

c?4=—-—v2w, d5=—— V2w 
dx dy 

and 

5,(r) = lnr+ 1, 52(r) = — - cos 2co, B3(r) = sin2co 
2 4 

When the loading is due to a concentrated force P, at some 
point Q0 or to a line load/?(s) along a curve L* the domain in
tegrals in equation (39) can be computed as described in Sec
tion 6. 

When the plate is loaded by a load / (Q) distributed over a 
region R*cR bounded by a curve C* the domain integral in 
equation (39) can be converted into a line integral on C*. 
Thus, using integration by parts and taking into account that 
the kernels A2 (r) and A4 (r) are symmetric, we obtain 

(_d2 

IL (^-|r)w**, 

JLW- d2f d2f 

di2 

v 
)^-jc.A4(,)(- df_ 

3£ 

df 
dr/ 

dxdy 

i n a ) * + L (• 3€ 

d 

drj 
sina) A4(r)fds (42a) 

\L^wd^=\Lk^d^ 
9A4(r) 

dr) 
-fcosa — A4(r) sina | ds ,], 

\Li^2A^d^=\LA^2Mdv 

(42b) 

+ U df dA4(r) 

3f 
-A4( /> 

a2/ 

-i 
dn H dnd£ 

A2(r)fcosads 

ds (42c) 

n «* aj> 
V2A4(r)fd^dv 

=IL>(r4v2^*»+L[-
a2/ 

- A 4 ( r ) — 4 - * 
andij J J c* 

]< 

a/ aA4(r) 

a?/ dn 

A2 (/-)/sinacb 
(42d) 

where r= \P—Q\, P$R, Q€R* in the domain integrals, while 
r = \P—q\, P 6 i?, #€C* in the line integrals; a = x^n. 

Notice that if the loading is constant or varies linearly on 
R*, the domain integrals in the right-hand side of equations 
(42) vanish. However, i f / i s an arbitrary function, these do
main integrals can be converted into line integrals using equa
tion (A7) of the Appendix. 

„ , „ coso smco 
B4(r) = ,B5(r)= 

r r 

^ ^ n ^ / N 4cos(2a>-0>) 2sin(2co-^) 
C!(r) = 0, C2(r) = 3 , C3(r) = 5 

C4(r) = 0, Cj(r) = 0 

2cos2co , „ sin2co 
D,(r) = 0, D2(r) = — £>3(r) = — ^ 

8 Internal Supports 

Due to functional requirements, it is often necessary to sup
port a plate not only on its boundary but also on columns 
(point supports) and on load bearing walls (line supports). At 
these interior supports the deflection is prescribed while the 
corresponding reaction is unknown. In order to treat this 
problem, equations (17) and (18) must be supplemented by 
loading terms of the form given by equations (34a, b) and 
(35a, b) for point and line supports, respectively. In this case, 
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Table 1 Deflections of plates of various shapes and boundary conditions subjected to a uniform load 
q as compared with those obtained from existing solutions (analytical or numerical) 

Shape and boundary conditions w0/(qa*/D) 
Computed Existing 

r 
a/2 J 

°/z j 

Jr / j_"t / 2^ Square plate; all edges simply-
supported (e = 0.30) 

0.00406 0.00406 
(60 B.E.) (Timoshenko and 

Woinowsky-Krieger, 1959) 

//////ss/// 

-ic-

777777777777', 

Square plate; all edges clamped 0.00126 0.00126 
(60 B.E.) (Roark and Young, 1975) 

'/7//////// 

°/2 ; 
Y C F -

C 
7777777777 

Square plate; three edges 
clamped and one edge free 
(K = 0 . 1 5 ) 

0.00273 0.00276 
(76 B.E.) (Bares", 1979) 

w. Square plate; three edges simply-
supported and one edge free 
(e = 0.30) 

0.0124 0.0129 
(76 B.E.) (Timoshenko and 

Woinowsky-Krieger, 1959) 

w. Square plate; two opposite edges 
simply-supported, one edge clamped 
and one edge free (e = 0.30) 

0.0109 0.0112 
(76 B.E.) (Timoshenko and 

Woinowsky-Krieger, 1959) 

t w. Square plate; three edges free, 
one edge clamped (cantilever 
plate) (̂  = 0.30) 

0.131 0.131,0.129,0.127 
(60 B.E.) (Lee and Lam, 1983) 

Semicircular clamped plate 0.00202 
(60 B.E.) 

0.00202 
(Szilard, 1974) 

Semicircular simply-supported 
<\ plate (x = 0.30) 

0.00812 0.00811 
(60 B.E.) (Timoshenko and 

Woinowsky-Krieger, 1959) 

Elliptic clamped plate; Semi-
axes ratio a/b = 0.625 

0.0295 0.0295 
(60 B.E.) (Timoshenko and 

Woinowsky-Krieger, 1959) 

rf24°'2H 
a/2V3T Equilateral triangular plate; 

all edges simply-supported 
0.000579 
(60 B.E.) 

0.000579 
(Timoshenko and 
Woinowsky-Krieger, 1959) 

Annular plate. Outer edge 
clamped, inner edge free. Ratio 
of radii 6/a = 2 (y = 0.30) 

0.0843 
(60 B.E.) 

0.0843 
(Timoshenko and 
Woinowsky-Krieger, 1959) 
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Table 2 Deflections and stress resultants of simply-supported square plate with side length a 
and Poisson's ratio p = 0.2 subjected to a uniform load q. Upper numbers: computed; lower 
numbers: exact) 

y=x 

0 

0.1(7 

0.2a 

0.3<7 

0.4a 

w/(qaA/D) 

.4063E - 02 

.4063E-02 

.3704E-02 

.3704E-02 

.2744E-02 

.2744E-02 

.1503E-02 

.1503E-02 

.4349E-03 

.4346E-03 

Mx/qa2 

.4421E-01 

.4420E-01 

.4125E-01 

.4125E-01 

.3291E-01 

.3290E-01 

.2079E-01 

.2079E-01 

.7852E-02 

.7843E-02 

Mxy/qa2 

0 
0 

.2728E-02 

.2728E-02 

.1025E-01 

.1025E-01 

.2069E-01 

.2069E-01 

.3119E-01 

.3119E-01 

Qx/qa 

0 
0 

-.4854E-
-.4854E-
-.8827E-
-.8827E-

_ 
-

-01 
-01 
-01 
-01 

-.1097E + 00 
-.1097E + 00 
-.9881E 
-.9888E 

-01 
-01 

Vx/qa 
x = a/2 

.2162E + 01 

.2160E + 01 

.2102E + 01 

.2107E + 01 

.1955E + 01 

.1950E + 01 

.1647E + 01 

.1651E + 01 

.1260E + 01 

.1129E + 01 

Table 3 Deflections and reactions of a clamped circular plate loaded by a concentrated load P at its center 

Kats. & Arm. 
BEM (Guoshu 
Exact (Timosh. 

& Mukh. 1986) 
&Woin.-Kr.,1959) 

r/a = 0 

0.01989 
0.01989 
0.01989 

v//(Pa2/D) 

r/a = 0.25 

0.01520 
0.01523 
0.01520 

r/a = 0.50 

0.00803 
0.00804 
0.00803 

r/a = 0.75 

0.00227 
0.00227 
0.00227 

Mr/P 

a t r = a 

-0.07957 
-0.07959 
-0.07957 

Vra/P 

3Xr = a 

-0.15915 
-0.15924 
-0.15915 

Table 4 Deflections w = w/(qa4/Eh3) at the inner free edge (r = a) and bending stress ar = 6Mr/qa2 at the outer clamped 
edge (r = b) of an annular plate (v = 0.30) subjected to a uniform load 

6/(7=1.25 b/a= 1.5 6/a = 2 6/a = 3 6/a = 4 

w °r °r 
Kats. & Arm. 0.00199 0.1050 0.01390 0.2592 0.05753 0.4800 0.1296 0.6567 0.1621 0.7099 
BEM (Guoshu & Mukh. 1986) 0.00201 0.1050 0.01391 0.2587 0.05758 0.4795 0.1301 0.6560 0.1629 0.7099 
Exact (Timosh. &Woin.-Kr., 1959) 0.00199 0.1050 0.01390 0.2590 0.05750 0.4800 0.1300 0.6570 0.1620 0.7100 

the forces P andp(s) in equations (34a, b) and (35a, b) denote 
the unknown point and line support reactions. The application 
of the boundary element technique to approximate the line in
tegrals (35a, b) results in a sum of terms involving the 
unknown values of the line reaction at the nodal points in the 
right-hand side of equations (20c, d). To evaluate these 
unknown reactions additional equations are required. These 
equations can be established by collocation at the support 
nodes (i.e., point supports and nodal points of the discretized 
line supports) using equation (14) (see Hartmann and 
Zotemantel (1986) and Katsikadelis et al. (1988)). Thus, the 
additional equations are 

w,= \\ v(riQ)fdaQ+ £ A4(r„)P,+ 2 > 4 ( r , ; / ) ^ 
J J R y = l 7 = 1 

TV 

+ T, [A,(r„)Oy + A2(r<,)A} + A3(ri,)*y + A4(rv)* ;] (43) 
7 = 1 

where w, (z'=l, 2, . . . , (K+L)) are the deflections at the 
K+L internal support nodes; Pj (y'=l, 2, . . . K) are the 
unknown reactions at the 7?-point supports; pj ( / = 1 , 
2, . . . , L) are the unknown values of the line reaction at the 
L nodal points of the discretized line support; and fiy, Xj, *,-, 
Vj are the 4TV unknown nodal values of the boundary quan
tities defined by equations (10). 

Equations (43) should be incorporated in equations (20a, b, 
c,d). 

9 Numerical Results 

In the past fifteen years, a number of papers have been 
published wherein various schemes are presented for analyzing 
elastic plates subjected to transverse forces by the BEM 
method (e.g., Maiti and Chakrabarty, 1974; Bezine, 1978; 

Stern, 1979; Costa and Brebbia, 1984). However, with few ex
ceptions (e.g., Hartmann and Zotemantel, 1986; Guoshu and 
Mukherjee, 1986), these papers contain only a sampling of 
numerical results which are limited to plates of simple 
geometry (rectilinear boundary) and uniform boundary condi
tions. Curvilinear boundaries are avoided because they pro
duce certain difficulties in the numerical analysis. Some results 
for plates with curvilinear boundaries are given by Guoshu 
and Mukherjee (1986). 

In this investigation a computer program has been written 
for analyzing plates with arbitrary geometry using the 
numerical procedure described in the previous sections. 
Numerical results have been obtained for rectangular, 
triangular, circular, and ellliptical plates as well as for plates 
of arbitrary geometry having various boundary conditions 
(clamped, simply-supported, free, or mixed). Constant ele
ment with parabolic approximation of its curved boundary 
has been used. The results are compared with those available 
from analytical or other numerical solutions. In the tables 
and figures the results obtained in this investigation are re
ferred to as Kats. & Arm. 

In Table 1 values of the deflection at characteristic points of 
a variety of plates subjected to a uniform load are given. They 
are compared with those available from analytical or other 
numerical solutions. From this table it can be deduced that the 
method presented in this investigation is suitable for analyzing 
plates of any geometry (rectilinear or curvilinear boundary) 
and any boundary conditions (uniform or mixed). 

In Table 2 values of the deflection and stress resultants for a 
simply-supported square plate subjected to a uniform load are 
given. They are compared with those obtained from the 
Navier series solution (Timoshenko and Woinowsky-Krieger, 
1959). The results given in this table illustrate the efficiency 
and accuracy of the method presented in this investigation. 
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Table 5 Corner reaction R = [Tw]/qa3 in a uniformly-loaded 
simply-supported square plate (»< = 0.30) compared with the 
exact and other BEM solutions 

Kats. & Arm. 

BEM (Stern, 1979) 

BEM (Costa and Brebbia 

Exact (Timosh. & Woin.-

1984) 

Kr. 

Number of Nodes 

1959) 

32 

60 

32 
64 

36 

R 

0.0723 
(0.068) 
0.0726 

(0.067) 

0.0651 
0.0648 

0.0648 

0.065 

Table 6 Deflection and bending moment at the center of a 
uniformly-loaded simply-supported equilateral triangular 
plate with side length a and v = 0.30 

Kats. & Arm. 
24 B.E. 

Maiti and Chakr. (1974) 
24 const. B.E. 

Costa and Brebbia (1984) 
27 const. B.E. 

Exact (Timosh. & Woin.-Kr., 
1959) 

w/(qa*/D) 
xlO3 

0.580 

0.582 

0.568 

0.579 

Mx/qa2 

xlO 2 

1.807 

1.816 

1.830 

1.805 

My/qa2 

XlO2 

1.807 

1.807 

1.830 

1.805 

In Table 3 values of the deflection and stress resultants for a 
circular clamped plate loaded by a concentrated load P at its 
center are presented. They are compared with those obtained 
from the exact analysis and by Guoshu and Mukherjee (1986). 

In Table 4 values of the deflections and stress resultants for 
a uniformly-loaded annular plate with free inner edge and 
clamped outer edge are given. They are compared with those 
obtained from the exact analysis and by Guoshu and Mukher
jee (1986). 

In Table 5 values of the corner reactions of a simply-
supported square plate, subjected to a uniform load, are 
given. Moreover, in Figs. 3 and 4, values for the slope dw/dn 
and the effective shearing force V„ are plotted. They are com
pared with those obtained by using the conventional BEM 
solutions (Stern, 1977; Costa and Brebbia, 1984) and by the 
Navier series solution (Timoshenko and Woinowsky-Krieger, 
1959). In the approach presented in this investigation the ef
fective shearing forces, the twisting moments and, conse
quently, the corner reactions, are established by differen
tiating numerically, along the boundary — the normal slope of 
the elastic surface of the plate (see equations (7b), (26), and 
(27)). Thus, small error in the values of the slope may result in 
greater error in the values of the twisting moments, the effec
tive shearing forces, and the corner reactions. This occurs at 
the nodal points in the neighborhood of the corners of the 
plate. The results may improve either by using graded 
-elements of varying size near the corner or by using more 
refined techniques (Mitra and Ingber, 1987) which, however, 
are applied at the expense of the simplicity afforded by the 
constant element approximation. A simple remedy is to 
replace the computed values of the slope at the nodal points 
adjacent to the corners by those obtained by parabolic ex
trapolation of the neighboring nodal values (see values in 
parentheses in Table 5). 

In Figs. 5 and 6 values of the bending moment M„ and the 
effective shearing force V„ of a clamped square plate sub
jected to a uniform load are plotted. They are compared with 
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Fig. 3 Normal slope on an edge of a uniformly-loaded simply-
supported square plate 
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Fig. 4 Effective shearing force on an edge of a uniformly-loaded 
simply-supported square plate 
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Fig. 5 Bending moment on an edge of a uniformly-loaded clamped 
square plate 

those obtained from another BEM solution (Stern, 1979) and 
by Moody (1960). 

In Table 6 results for a simply-supported equilateral 
triangular plate subjected to a uniform load are presented. 
They are compared with those obtained from the exact 
analysis and by other BEM solutions (Maiti and Chakrabarty, 
1974; Costa and Brebbia, 1984). 

In Fig. 7 values of the bending moment Mx along the cross-
sections y = 0 and y = 2 of a simply-supported rectangular 
plate with four internal columns are plotted. They are com
pared with those obtained by Hartmann and Zotemantel 
(1988). The plate is subjected to a uniformly distributed load. 
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Fig. 6 Effective shearing force on an edge of a uniformly-loaded 
clamped square plate 

200 

I -z 
LU 

O 
5 
(3 
Z 
Q 
Z 
111 
m 

Kats. 8. Arm. 
Hart. &Zot. (1986) 

(130.8) 
(130.5) 

POINT LOCATION (m) 

Fig. 7 Distribution of the bending moment M x at y = 2 (curve I) and 
y = 0 (curve II) in a rectangular simply-supported plate with four internal 
supports (r = 0.3, O = 2700kNm, <j = 100kN/m2). The values in the paren
theses are taken from Hartmann and Zolemantel (1986). 

Finally, in Fig. 8 the contours for the deflection of a plate 
with a circular hole having an external boundary of composite 
geometry and mixed boundary conditions are plotted. This il
lustrates the applicability of the method presented in this in
vestigation to the analysis of plates of any specified geometry 
and boundary conditions. 

10 Concluding Remarks 

In this paper a new boundary equation method for the 
analysis of thin elastic plates subjected to transverse forces is 
presented. The main conclusions drawn from this investiga
tion can be summarized as follows: 

(a) The method is very well suited for computer-aided 
analysis. 

(b) The method is very well suited for analyzing plates, 
with or without holes, having a complex geometry with rec
tilinear or curvilinear boundary and subjected to any kind of 
loading. 

(c) The method is very well suited for analyzing plates of 
arbitrary shape with mixed boundary conditions, including in
ternal supports. 

(d) The method can be extended to solve other boundary 
value problems with complex boundary conditions. 

CLAMPED 

-t- 1.5 a -A 

Fig. 8 Deflections w = wl(qa ID) of a plate with composite shape 
(j< = 0.30) subjected to a uniform load q. The contour lines are drawn 
vv = 0.035 apart. 

(e) The conversion of the domain integrals into line in
tegrals reduces drastically the computer time and renders the 
BEM a powerful tool for analyzing plates with complex 
geometry and loading. 

(f) Only four different kernels appear in the boundary in
tegral equations which have simple expressions. Those of the 
kernels which are singular involve only logarithmic or Cauchy-
type singularities. Thus, hypersingularities which lead to 
divergent integrals are avoided and, consequently, the com
putational task is reduced and the numerical solution of the in
tegral equations is highly simplified. 
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A P P E N D I X 

In this Appendix techniques for the conversion of the do
main integrals (21M) and (2If) into line integrals are presented. 
Two cases are distinguished. 

(a) Consider a function/(Q), Q: (£, tf) which is harmonic 
in a subregion R * of R bounded by the curve C*, i. e., V 2 / = 0 
in R*QR, Moreover, consider a function v(r), r = \ P—Q\ , 
P€R, QiR*, as well as a function u(r), which is a particular 
solution of the following equation 

V2u = v. (Al) 

Applying Green's identity to the functions/and u(r), we 
obtain 

Table A1 Particular integrals of equation V 4« = / 

5L^=L( f- du 

On 
3 / ' 
dn • 

\ds. (Al) 

In order to establish the function u, equation (A 1) is written 

J_J_ L du \_v{r) 
r dr V dr ) 

(A3) 

(A4) 

(AS) 

Integration of equation (/13) yields 

for u = r2mr/4 ul = (2iA\nr-iA)/\2% 

for v = lnr + 1 u2 = r2\nr/4. 

Note that, for u = ul or u = u2, the line integral in equation 
(A2) varies continuously as the point P crosses the boundary 
C*. 

(b) Consider an arbitrary function f(Q) defined in a 
subregion R* of R bounded by a curve C*. Moreover, con
sider the function ti = (l/87r)r2 lnr, r= | P-Q | , PtR, QtR* 
as well as a function u (r), which is a particular solution of the 
following equation: 

V 4 « = / . (46) 

Applying the Rayleigh-Green identity to the functions v and u, 
we obtain 

f(x,y) u(x,y) 

1 
X 

y 
X1 

y2 

xy 
X3 

y3 

x2y 
xy 
e* 
e> 
COSJC 

cosy 
S1IW 

x4/24 
x5/120 
A/24 
x6/360 
/ / 3 6 0 
x5yA20 
x7/440 
/ / 4 4 0 
J C V / 3 6 0 
xy6/360 
i;* 

(J 

COSJC 

cosy 
siru: 

/V24 
xy4/24 
yV120 

XTV120 

x2y2/8 
xiy2/2A 
x2y3/24 

* y / 7 2 

siiy siny 

\iVfd° = ̂ P) + l (l — v 2 « — u—vzy+ v "— 
dn dn dn 

- VZM 
dv 

~~dn 
)ds (Al) 

and 

II. V2vfda = eV2u(P) 

+ \ ( V 2 y — V 2 M — v 2 « V2 v)ds 
ic \ dn dn / 

where 

e = l 

e = l / 2 

e = 0 

when 

when 

when 

PtR* 

P € C * 

PtR\R* 

(AS) 

(49) 

R* is the closure of R*. 
The discontinuity in relations (Al) and (A%) is due to the 

fact that the line integral with kernel dv2v/dn behaves like a 
double layer potential. 

In order to establish the function u, equation (A6) is written 
as 

d4u 
16 -=Az,z) (AW) 

dz2dz2 

where 

z=x+iy, z=x—iy, ; = V^1 

The function u is obtained by consecutive integrations of 
equation (,410). 

For simple functions / , the function u can be readily 
established as a particular solution to equation (A6) by inspec
tion. In Table A\ particular integrals for certain simple func
tions f(x,y) are given. 
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Dynamic Stability of Nonlinear 
Antisymmetrically-Laminated 
Cross-Ply Rectangular Plates 
The dynamic stability problem is solved for rectangular plates that are laminated 
antisymmetrically about their middle plane and compressed by time-dependent de
terministic or stochastic membrane forces. Moderately large deflection equations 
taking into account a coupling of in-plane and transverse motions are used. The 
asymptotic stability and almost-sure asymptotic stability criteria involving a damping 
coefficient and loading parameters are derived using Liapunov's direct method. A 
relation between the stability of nonlinear equations and linearized ones is analyzed. 
An influence on the number of orthotropic layers, material properties for different 
classes of parametric excitation on stability domains is shown. 

Introduction 
The problem of laminated composites has been an object 

of considerable attention over the past two decades. Numerous 
papers are available on laminated plates and shells under static 
and periodic loadings. The investigation of static buckling and 
free vibrations of laminated plates was initiated by Ashton 
(1969), Bert and Mayberry (1969), and Whitney and Leissa 
(1969). An exact theory and numerical results for buckling and 
free vibrations of unsymmetrically-laminated cross-ply rectan
gular plates were presented by Jones (1973). On the other hand, 
attempts were also made to investigate forced deterministic 
vibration of large aspect ratio laminated plates (Sun and Whit
ney, 1974). Free large amplitude vibrations of laminated plates 
described by nonlinear differential equations have also received 
much attention (Chandra and Basawa Raju, 1975; Bert, 1973; 
Hui, 1985). The first analysis of the parametric instability of 
simply-supported laminated plates subjected to sinusoidal de
terministic in-plane forces with a constant frequency is due to 
Bennett (1971). In 1985 Birman published a study on the dy
namic stability of unsymmetrically-laminated rectangular plates 
subjected to in-plane harmonic forces using a single model 
approach of transverse displacement. The result was obtained 
under the additional assumption that the governing linear par
tial differential equations of motion can be approximated by 
an ordinary differential equation. Instability regions as func
tions of the load amplitude and frequency were obtained an
alyzing the Mathieu differential equation. All mentioned papers 
have applied finite dimensional or model approximations in 
analysis of vibrations and stability. The Liapunov direct method 
is a quite different approach and can be successfully used to 
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analyze continuous systems described by partial differential 
equations. A significant advantage is offered by the method 
in that the equations of motion do not have to be solved in 
order to examine stability. The method can be applied not only 
to a simple elastic column in a linearized approach, but also 
to plates and shells governed by nonlinear partial differential 
equations (Tylikowski 1978, 1984). The dynamics of layered 
plates subjected to harmonic in-plane loads was also examined 
by Srinivasan and Chellapandi (1986), who reduced the sta
bility problem to that with finite number of degrees-of-free-
dom. The paper mentioned above does not include geometric 
nonlinear effects which can occur in the case of thin layered 
plates. Up to now, the stability problem of such plates due to 
time-varying excitations has not been investigated extensively 
enough. Contrary to the stability analysis of sandwich plates 
(Salama and Cheng, 1973), an influence of damping on stability 
regions was neglected. This omission causes that near the res
onance of the plate, an infinitesimal magnitude of the time-
dependent component of in-plane load produces loss of the 
plate stability (Birman, 1985). 

In recent years the theory of random vibrations has been 
finding more and more applications in engineering. Numerous 
excitations acting on structures have a random nature and 
should be described by means of the probability theory. At 
the present time there exists a number of papers calculating 
response characteristics of randomly-excited sandwich and 
laminated plates (Kulkarni, Banerjee, and Sinha, 1975; Witt 
and Sobczyk, 1980). 

The present paper is believed to be the first analysis of 
dynamic stability of geometrically nonlinear motion of a cross-
ply antisymmetrically-laminated plate including a dissipation 
of energy and treating the plate as an infinite-dimensional 
continuous system. As it was mentioned previously, the sta
bility analysis strongly depends on the dissipation of energy. 
One of the first studies on the dynamics of laminated plates 
including a material damping is due to Dong (1967) who mod
eled viscoelastic plies as standard linear solids. A more so-
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phisticated model of material damping was introduced by Siu 
and Bert (1974) who used a whole matrix of damping coef
ficients to describe the damping in laminated plates excited by 
the sinusoidal with respect to time force. The proposed damp
ing ratio varies with frequency, temperature, and strain. But 
its value even in recently published works is arbitrarily assumed 
and its variation with frequency, temperature, and strain is 
ignored (Alam and Asnani, 1986). In order to avoid these 
doubts and to simplify analyses, the simplest model of viscous 
damping is taken into account in the same way as the model 
is used in forced random vibrations analysis of composite 
structures (Witt and Sobczyk, 1980). 

In the present paper the applicability of the Liapunov method 
is extended to antisymmetrically-laminated cross-ply rectan
gular plates compressed by time-dependent random in-plane 
forces. Using the appropriate energy-like Liapunov functional, 
sufficient conditions for the asymptotic stability and the al
most-sure asymptotic stability of undeflected form of the plate 
are derived. Stability domains obtained by applying the line
arized equations of motion are compared with those employing 
the dynamic Karman-type plate theory. 

Problem Formulation 
Let us consider a thin, cross-ply laminated rectangular plate 

consisting of an even number of elastic orthotropic layers an
tisymmetrically laminated about its middle surface from both 
a geometric and a material property standpoint. The Kirchhoff 
hypothesis on nondeformable normal element and Karman-
type geometric nonlinearity are taken into account. Neglecting 
in-plane, rotatory, and coupling inertias, the governing partial 
differential equations are given as (Chia, 1980) 

(1) 
(2) 

NXlX + Nxy_y = 0 

Nxy,x + Ny.y = 0 

phw n + 2fSphw i — Nxw -a - Nywyy - Mx 2MV, 

Mv Nrw_> NyWyy ~ INXyW ,X)> = 0 . 

{x,y) e a s (0,«) x (0,b). (3) 

In-plane and transverse displacements are denoted u, v, and 
w, respectively, p is the density of plate material, h is the total 
thickness, a and b denote in-plane dimensions of the plate, /3 
is a damping coefficient, and Nx and Ny are time-dependent 
membrane forces. In-plane forces and moments are expressed 
by displacements as follows 

Nx = AnuiX + Al2vty - BnwtXX + - (Anw
2
x + Anw

2
y) 

Ny = Al2uiX + A22v,y + Buw_yy + - (Ai2w
2
x + A22w*y) 

(4) 

Nxy = A6(,(uty + viX + WjWj 

Mx = BnuiX - DuWtXX - D\2wtyy + -Bn w% 

My = -BnVj - DawiXX - D2Zwtyy - -Bnw*, (5) 

Mxy = -2D66wiXy 

in which the plate extensional, coupling, and bending stiff
nesses are 

(AUtpu,Dy) = \_h/2Qu(l,z,z2)dz. 

The reduced in-plane stiffnesses of an individual lamina are 
expressed in terms of the lamina principal material properties 
as 

Qn = E,/(l - vnv2l) 

Ql2 = E2>-12/(1 - J-12^21) 

Q22 = E2/(l - vnv2l) 

Qee = Gi2 

"21 = "12E2/E! 

where E b E2, G12, and vl2 are major Young's modulus, minor 
Young's modulus, and shear modulus, and major Poisson's 
ratio, respectively. 

The plate is assumed to be simply supported along each 
edge. The conditions imposed on displacements and internal 
forces and moments, called according to Almroth's (1966) 
classification S2, can be written down as 

w = 0 Mx = 0 Nx = 0 v = 0 at • 0,a 

(6) 
w = 0 My = 0 Ny = 0 u = 0 at y = 0,b. 

Dividing equations (1), (2), and (3) by ph and denoting nx 

= Nx/ph, riy = Ny/ph, nxy = Nxy/ph, mx = Mx/ph, my = 
My/ph, mxy = Mxy/ph,fx = Nx/ph,fy = Ny/ph leads to the 
basic equations of motion 

(7) 

(8) 

+ nXy, y = 0 

0 

mr LYnXyXy '"y,yy W,„ + 20W,, - . / > , „ - fyWjy 

~ nxw,xX ~ nyWjy - 2nXyWtXy = 0, (x,y)tQ (9) 
due to the bending-extension coupling the equations (7), (8), 
and (9) are coupled even in a linearized case. 

Let us assume that the solution of equations (7), (8), and 
(9) exists and belongs to the Hilbert space W2^)-

The purpose of the present paper is to derive criteria for 
solving the following problem: Will the deviation of plate 
surface from the unperturbed state (trivial solution) be suf
ficiently small, in some stochastic sense, in the case when 
membrane forces are time dependent. The plate dynamically 
buckles when the membrane forces get so large that the plate 
does not oscillate about the unperturbed plane state and a new 
increasing mode of oscillations occurs. To estimate a perturbed 
plate surface, we introduce a measure II • II of distance of the 
solution of equations (7), (8), and (9) with nontrivial initial 
conditions from the trivial solution. Throughout the paper the 
meaning of the term measure is slightly different from that 
used in analysis. The introducing of a.measure is necessary in 
order to define neighborhoods on W22(U) and to estimate 
motion perturbation. It should also be emphasized that there 
is a difference of meaning of the term stability in continuous 
(infinite-dimensional) systems from that in discrete systems. 
As, in general, norms, measures of distance, and metrics de
fined on infinite-dimensional spaces are not equivalent, it is 
possible to have stability for some measures, while giving in
stability with respect to others. 

We are going to analyze the asymptotic and almost-sure 
asymptotic stability of unperturbed solution. Following 
Caughey and Gray (1965), we will say that the trivial solution 
of equations (7), (8), and (9) is almost-sure asymptotically 
stable, is a measure of distance between the perturbed solution 
with arbitrary initial conditions and the trivial one tends to 
zero with probability one as time tends to infinity 

• P(lim llwll = 0) = 1. (10) 
t-ao 

In the deterministic case, the trivial solution is called asymp
totically stable if, for all solutions of equations (7), (8), and 
(9) with arbitrary initial conditions, a measure of distance 
between the perturbed solution and the trivial one tends to 
zero as time tends to infinity 

lim llwll = 0. (ID 
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From the mathematical point of view the feature common 
to all parametric vibrations is that they are described by dif
ferential equations with coefficients depending explicitly on 
time. In deterministic parametric vibration it is well known 
that the stability properties are determined from the Mathieu 
equation together with the corresponding Ince-Strutt diagram. 
If the parametric excitation becomes random the stability cri
teria depend on the statistical characteristics of the excitation 
and the system parameters. Specifically, if the excitation is 
sufficiently narrow-bounded or it has one latent periodicity, 
a series of wedges on the amplitude-frequency plane can be 
expected analogously to the deterministic parametric reso
nance. The task is not so simple when the stochastic excitation 
is wide-band and continuous systems with the infinite number 
of natural frequencies are analyzed. Difficulties especially arise 
when information concerning the power spectral density of the 
excitation is not available and the excitation is described by 
the probability distribution only. In the present analysis the 
direct Liapunov method is proposed to overcome these dif
ficulties and to establish criteria for the almost-sure asymptotic 
stability of laminated plate treated as the infinite-dimensional 
system subjected to the in-plane stochastic forces with the 
known probability distribution. 

Stability of Linearized Equations 
We start from a linearized problem, i.e., omitting the non

linear terms in formulae (4) and (5). Using Kozin's method 
derived for linear problems (Kozin, 1972), we construct the 
functional as a sum of modified kinetic energy Tand potential 
energy of the plate 

v = T + - ^ m x W > : 1 2mxywiXy 

+ nxu„ + nyv„ + nxy(u„ + vJ]dQ, (12) 

where 

S.W + 2/3ww, + 2j32w2)dQ. 

The functional is positive definite as the terms of the integrand 
in 7" can be rearranged as a sum of squares. Under the previous 
assumptions imposed on in-plane forces, the classic differ
entiation rule can be applied to calculate the time-derivative 
of functional (12) 

dV 

dt = J. [("•< _, + fiw)wM + I3w2, + 2/32vw, + 
1 

-mx>twiXX - mxwyXXI - mytlwiyy - myw<yyt - 2mxy^xy 

- 2mxywtXy, + nXy,u,x + nxu.x, + ny.,v.y + nyv.y, 

+ nxyJ (Mj, + vj + nxy(utyt + viXl) >dti. (13) 

Upon substituting the linearized version of equation (9), we 
rewrite expression (13) in the form 

dV 

dt 
= - 2(3K + 21/, (14) 

where an auxiliary functional U is defined as follows: 

U 
2 J" 

2/32ww, + 2/33w2 + (vv, + (3w)(fxwt} 

+ fyWjy) + mXtXXwtl + 2mxyyXywit + «„ , )» , , + @mXtXXw 

+ 2/3mxyiXyw + @mytyyw - fimxw:XX - $myw<yy - 2$mxyy>xy 

1 , 
- z (.mjt.tw.xjc + mxwiXXl + my:,w:yy + mywiyyl 

+ 2mxy,,w:Xy + 2mxyw,xyt) da + | /, + i i2. (is) 

In equation (15), the last two terms are given by the relations 

h = ]„ (nx.Mjc + riyjVj + nxy:,(u_y + vJ)dQ, 

h = ]„("*",*/ + nyv.yt + nxy(u>yl + vfXl))da. 

Upon integrating by parts, we obtain 

h = ]<,«*,< " dy - \anXiXtudQ + ]fl nyi, v dx 

- \a"y.yivda + \0nxyilu dx - Jnww,MdQ 

\0nxy,,v dy - \nxy,x •vdQ. 

Taking into account boundary conditions (6) imposed on nx 

and n,y, and substituting equations (7) and (8), we have 

1 (nx.x + « w ) , ,w 

+ (ny.y + nxy<x)tlv 

We can prove in the same fashion that 

h = 0. 

dQ = 0. (16) 

(17) 

Upon integrating by parts and using boundary conditions 
(6) imposed on transverse displacement w, transverse velocity 
vf(, and moments, we arrive at the following formulae 

\jnx.xxgdU = ]nmxgiXXJfi 

\0
my,yygd® = \n

myg,yyd® 

\amxy.xygdQ = YmxyS,xyda, (18) 

where g = (w, w,). 

The first two equations of motion (7) and (8), written explicitly 
in displacement, can be treated as a second-order system of 
partial differential equations with respect to functions u and 
v. Solving the system by means of Fourier series, we can check 
that the following equalities are satisfied 

\amx.,wtXXdQ, = J ^ w ^ t f Q 

\a
my,t»>,yydV = J„ niyWjyidQ. (19) 

Upon using equalities (16), (17), (18), and (19) it is possible 
to convert the functional U into the simple form 

U 
2 J" 

2/32ww, + 2/33w2 

dQ. + (W,l + Pw)(fXW,xx + fyV>,yy) 

Now we attempt to construct a bound 

U < \V, 

where the function X is to be determined. From equation (14) 
and inequality (21) we have 

1 

(20) 

(21) 

V(t) < F(0)exp \-2t 
t J° \(s)ds (22) 

Thus, it immediately follows that the sufficient stability con
dition for the asymptotic stability, with respect to the measure 
11-11 = F1 '2, is 

lim - I \(s)ds (23) 
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or, for the almost-sure asymptotic stability, if the processes fx 

and fy are stationary and satisfy an ergodic property guar
anteeing the equality of time averages and ensemble averages 
with probability, one is 

EX < (3 (24) 

where E denotes the operator of the mathematical expectation. 
Our object now is to obtain a function X satisfying inequality 

(21). It means that the function X is defined as a maximum of 
ratio U/V over all admissible functions w and w,, satisfying 
boundary conditions. As the maximum is a particular case of 
a stationary point of the ratio, we apply the variational calculus 
and solve the problem 8(U/V) = 0. Upon writing and solving 
the associated Euler equations, which are linear in the case of 
second-order functionals, we find the function 

$ > E max 
Uj'=l,2, . 

fi2 + (fxr
2i2+fyj2)/2 (V2 + r„ + *«)" 

(25) 

where 

I\. = ; V + 4i2j2r2(p + 2q)/(F + 1) + j \ 

Kij = -[3(/7-l)2 /2(F+l)AP][2(p + ^)r»/1/4 

+ ((F+ \)r2P/2 + qj2)]6 + {qpr2 + (F+l)jV2yi6]/ 

X[((F+l)r2iV2 + qj2)(qr2P + ( F + l ) / / 2 ) 

-Go + sOWy2], 0 = Pb2(h8/Dnw*y/2, 

f = fb2ph/DUTr2, r = b/a, 

P = Qn/Qu, q = Qee/Qn. F = Q22/Q11 and N denotes the 
number of layers. Inequality (25) provides a sufficient con
dition guaranteeing the almost-sure asymptotic stability of the 
undeflected form of plate subjected to time-dependent mem
brane forces. It should be mentioned that in view of equality 
(17), written for functions ux, uy, vtX, v>y instead of ux„ uy„ 
v x„ and vty„ respectively, the Liapunov functional (12) can be 
simplified since the integral of the last three components of 
the integrand is equal to zero 

J"*".. + vx)]dQ = 0. (26) 

Stability of Nonlinear Equations 
The auxiliary linearized problem being solved, we can direct 

our attention to equations (7), (8), and (9) governing the mod
erately large vibrations of plate. In order to construct a suitable 
Liapunov function, we change the second part of potential 
energy in expression (12), taking into account the strain com
ponents dependence on transverse displacement 

VN= T + 2mXyW,xy 2 j " 

+ nxy(U_y + V, + M j dQ, (27) 

where forces and moments are defined in formulae (4) and 
(5). 

Upon differentiating, we convert the derivative of functional 
to the form (14), where U should be replaced by UN 

1 f ["1 
UN U + )a nx,iw,x + -z ny,,w

2y + nXy,,wiX 

+ nxwtXwM + riyWjWj, + nxy(wiX,wty + w,xwj 

+ (3(nxwiX + riyWj + 2nxyw<xwty) cm. (28) 

Upon integrating by parts and using nonlinear boundary con
ditions (6), one can significantly simplify functional UN 

UN = U - 2 Jn W*(".* + 2 WV " n"\v-y + 2 WV 

nxy(U<y + V^ + WJWJ) dQ. (29) 

It may be observed that contrary to the linearized case both 
VN and UN are fourth-order functionals. It complicates a sta
bility analysis and the problem is to find a function X satisfying 
inequality 

UN < \V„. (30) 

The associated Euler equations are nonlinear in the case of the 
fourth-order functionals. Therefore, our object now is to find 
such second-order functionals V* and U* that the inequality 

U* < \V* 

will make inequality (30) to be true. In order to do this we 
introduce the following notations («„, b^, dtJ) = (Ay, Bn,Djj)/ 
ph and express functional (27) in terms of displacements 

1 
v,y+ 2 w-y VN = T + 2 J" °n ( " * + 2 W ' 7 + "22 

+ 2an{u,x + -w2
xJ (v:y + -w2y) + ai6(u,y+viX+w:XwJ 

-2bu[ux + •jW2
x)w:XX + 2bu(viy + -w2

y)wtyy + dnw\ 

+ 2dl2WiXXW:yy + d22W
2yy + Ad^V^ dQ. (31) 

Using the identity VN = VN + Vb/4k2 - Vb/4k2, where Vb 

is a bending energy of orthotropic plate with the same bending 
stiffnesses 

"» = \i (dxiw2
xx + 2dl2wtXXwtyy+ dnw

2yy + 4d66w
2
xy)dQ 

and k is a number greater than 1, chosen so that we will obtain 
the greatest stability region, we regroup functional (31) in the 
following way: 

VN = V + - ] n an (uiX + - w2
x\ + 2al2Ux + - w U 

x ("J + 2 w*y) + «22{v.y + \ w.y) 

•bnk(uiX + -w2
x) 

4bnk(vy + -w2y)wtyy/2k + du (w iXJC/2ky 

+ «66(",v + Vj + W„W„)2 + -w\) w_rr/2k 

+ 2dn(wiXX/2k)(wiyy/2k) + d22(wtyy/2k)2 

+ 4d66(w:Xy/2k)2 dQ - 2 ]„ [«ll«2r + 2al2uiXvry 

+ a22v}y - 4bnku:Xw:XX/2k + 4bnkviywtyy 

/2k]dQ - Vb/4k2. (32) 

The second functional in equation (32) is positive definite for 
sufficiently small k. The functional can be interpreted as a 
modified potential energy of plate and can be written down 
as the integral of quadratic form 

p 2 j " zrCzd, (33) 

where («)rdenotes a transposition of matrix and z is a modified 
state of strain defined by a column matrix 
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ux + - wi 

v „ + r w\ 

~2k^ 

- 2 * W - > 

Table 1 Mechanical properties of the considered composite 
materials 

The matrix C is 

C = 

flu 

«12 

0 

-2kbn 

0 

0 

given as 

a 12 

«22 

0 

0 

2kbn 

0 

follows: 

0 

0 

«66 

0 

0 

0 

-2kbn 

0 

0 

dn 

dl2 

0 

0 

2kbu 

0 

di2 

dn 
0 

0 

0 

0 

0 

0 

^66 
(34) 

The functional Vp is positive definite if the Sylvester con
ditions of positive definiteness for matrix C are satisfied (Gant-
macher, 1960) 

" > 0 dn ' dl 
fln(^n dn) 4k2bl]cln > 0 

(du - dM - ah) + I6k*b4
u 

- 8*?, («„<*„ - andn) > 0. (35) 

We can solve inequalities (35) and obtain the number k as a 
function of material properties and the number of layers N. 
Omitting the fourth-order functional Vp and taking into ac
count formula (26), we obtain the lower estimation of func
tional VN by the second-order functional VN > V* = T + 
(1 - \/4k2)Vb. In a similar way we have the upper estimation 
of functional UN UN < U* = U + (3Vb/l6k2. Now we see 
that if a function X satisfies the following condition for the 
second-order functionals 

U + @Vb/16k2 < X [T + (1 - l/4k2)Vb], (36) 

then the same function X will fulfill inequality (30). 
We mention that condition (36) differs significantly from 

inequality (21) relating to the linearized case. Similar to the 
stability of uniform elastic shells (Tylikowski, 1984) described 
by Karman's equations, it is found that the sufficient stability 
condition (24) can not be sufficient to ensure the stability of 
trivial solution of nonlinear equations for laminated plates. 

Solving the associated Euler problem we find the function 
as follows: 

X = max )$T}j/4k2 + pTfj/16k* 

+ 4 U|§2 + (4 - \/k2)Y}j j (2j32 + f^P 

+fyJ
2) '.Uft2 + (4-l/k2)TjA . (37) 

Numerical Results and Discussion 
Formulae (25) and (40) give us the possibility to calculate 

minimal damping coefficients guaranteeing the almost-sure 

Property glass epoxy graphite epoxy 
Major Young's modulus E, (GPa) 
Minor Young's modulus E2 (GPa) 
Shear modulus G12 (GPa) 
Major Poisson's ratio vxl 
Density (kg m-3) 

53.8 
17.93 
8.96 
0.25 

2004 

172.4 
7.79 
5.3 
0.35 

1530 

0.5 __ 1 

Damping coef f ic ient , J5 

Fig. 1 Stability regions under the harmonic loading 

asymptotic stability for given values of excitation intensity. 
The almost-sure asymptotic stability region is defined as the 
set where the damping coefficient fi is greater than this critical 
value. Two groups of composite materials, namely glass epoxy 
and graphite epoxy, have been examined. The mechanical 
properties of these materials taken from the paper by Bert 
(1976) are given in Table 1. The number k2 maximizing stability 
regions calculated from inequalities (35) depends on the num
ber of layers. In the case of two-layered plates, when the 
bending-extension coupling is greatest, we have k2 = 1.31 and 
k2 = 1.2 for the glass epoxy and the graphite epoxy plate, 
respectively. 

The stability regions are calculated for two different classes 
of parametric excitation. First, under assumption that the ex
citation is harmonic with amplitude A, arbitrary frequency 
and random phase, the in-plane loading has the form / = A 
sin(ctf + <p). If the random phase has a uniform distribution 
on (0,2TT), the process/is zero-mean, stationary, and ergodic, 
and its probability density function is given as follows: g(z) 
= [TT^(1 - (z/Aff'2}-^ for \z\<A. The second class of 
parametric excitation is a Gaussian zero-mean process with 
variance a2. In order to compare the stability regions for both 
excitations, we introduce also the variance of the harmonic 
process related to the amplitude by means of the formula a2 

= A2/2. 
The stability regions as functions of a, 0, N, and r are 

calculated numerically in the case of unidirectional loading 
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Damping coeff ic ient, J5 

Fig. 2 Stability regions under the Gaussian loading 

only. Boundaries of stability regions calculated from the non
linear theory and the linearized one are drawn using the solid 
and broken line, respectively. The almost-sure asymptotic sta
bility regions of a square plate harmonically loaded are shown 
in Fig. 1. It is seen that if TV is increased /3cr decreases. The 
graphite epoxy plate is much more sensitive to increasing of 
iVas compared with the glass epoxy plate. In order to test the 
influence of geometric nonlinearity, the stability regions for 
the linearized equations of the two-layered plate are also cal
culated. As observed, the stability regions for the glass-epoxy 
plate slightly depend on the approach applied. On the contrary, 
when the graphite epoxy plate is analyzed, /3cr calculated from 
the linearized theory is approximately two times more than 
that obtained from the nonlinear approach. The results ob
tained in the present paper can not be directly compared with 
those published by Birman (1985) in the form of wedges in the 
amplitude-frequency plane as they neglect the effect of damp
ing. The present analysis applied to the deterministic harmonic 
loading enables one to calculate the bottom points of wedgelike 
stability regions embedded in the corresponding wedges ob
tained by Birman for undamped systems. 

The boundaries of stability regions for a square plate loaded 
by the Gaussian process are plotted in Fig. 2. Their behavior 
is similar to that presented in Fig. 1. A comparison of stability 
regions of two-layered plate for the Gaussian loading and the 
harmonic one is shown in Fig. 3. Like before, ficr of graphite 
epoxy plate is more sensitive to the change of loading class. 
It is seen that /3cr for the Gaussian loading is greater than for 
the harmonic loading. This increase can be attributed to the 
fact that the probability of event that the harmonic force is 

Glass-epoxy Graph i te -epoxy 

0 1 2 
Damp ing c o e f f i c i e n t , jb 

Fig. 3 Comparison of stability regions under the Gaussian and the 
harmonic loading 

greater than is equal to zero and the corresponding 
probability for the Gaussian process is positive. Moreover, the 
dependence is more articulated for the linearized theory, when 
the change from the glass epoxy plate to the graphite epoxy 
one rapidly increases /3cr. Figures 4 and 5 display increasing of 
stability regions with increasing of the plate aspect ratio r. The 
critical damping coefficients of the graphite epoxy plate change 
more rapidly as the plate aspect ratio increases in comparison 
with the glass epoxy plate. It should be noted that there is a 
significant difference in the dependence of stability regions on 
the linearized and the nonlinear approaches in relation to the 
glass epoxy and the graphite epoxy plate. The linearized ap
proach in the case of glass epoxy plate gives more conservative 
results. On the other hand, when the graphite epoxy plate is 
analyzed, results do not belong to the stability region. 

The Liapunov method used in the paper is general in nature. 
Although the present study is limited to the antisymmetrical 
configuration and the simply-supported boundary conditions 
S2, this can be extended without much effort to the symmetric 
configuration and the clamped boundary conditions C3. In 
both problems the Liapunov functional V and the auxiliary 
functional U have the same form and the final stability con
dition (24) can be derived, provided that the function X in 
estimation (30) is known. The calculation of the function X is 
more complicated as the presence of new coupling coefficients 
in dynamic equations and modified boundary conditions make 
a closed-form solution of associated Euler equations impos
sible. The approximate Rayleigh-Ritz technique or the Galerkin 
method should be used to solve the auxiliary variational prob
lem. 

Conclusions 
The applicability of the direct Liapunov method has been 

extended to geometrically nonlinear laminated plates subjected 
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Fig. 4 Influence of plate aspect ratio on stability regions of the graphite 
epoxy laminated plate under the Gaussian loading 

to time-dependent, in-plane forces. The major conclusion is 
that the linearized problem should be modified to ensure the 
stability of nonlinear plates. The criteria developed in the paper 
define stability regions in terms of the loading variance, the 
linear damping coefficient, the properties of plates, and the 
plate aspect ratio. 
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Bending of Plates on Thin 
Elastomeric Foundations 
Closed-form and series solutions are presented for the bending of plates bonded to a 
thin elastomeric foundation which is in turn bonded to a rigid substrate. The stan
dard fourth-order governing differential equation of a classical Winkler elastic 
foundation becomes a sixth-order equation for the case of an incompressible foun
dation. Oscillation decay rates are shown to be significantly different from those of 
the Winkler solution due to the incompressibility of the elastomer. 

Introduction 
Elastomeric materials are commonly used as supports be

tween machine or structural elements to give desired flexibility 
and damping characteristics. Because of the extremely low ex-
tensional and shear moduli compared to the bulk modulus, 
these materials often require different analysis techniques 
from other engineering materials. For example, when an 
elastomeric block is bonded between rigid platens and com
pressed (or extended), the pressure distribution is far from be
ing uniform. Instead the pressures are almost parabolically 
distributed, being very high at the center and nearly zero at the 
edges. As has been pointed out by Gent and Meinecke (1970), 
the dominant stress distribution obeys Poisson's equation and 
is, therefore, equivalent to the torsion stress function or the 
deflection of a pressurized soap film. 

When plates are supported on elastomeric foundations, 
special techniques must be employed to calculate the deflect
ed shapes. This paper provides a solution for the case of an 
elastic plate bonded to a relatively thin elastomeric foundation 
which is in turn bonded to a rigid substrate. Plate solutions 
based on a Winkler foundation are shown to be inadequate for 
these configurations. An alternate solution is proposed which 
utilizes a modified plate theory approach to correctly account 
for the special nature of an incompressible foundation. 

Background 

The original solution for the bending of beams on an elastic 
foundation has been attributed to Winkler (1867). This solu
tion assumes that the restoring force exerted on the beam by 
the foundation is proportional to the deflection. The implica
tion is that the restoring force at a point is dependent only on 
the deflection at that point, not on neighboring deflections. 
Although this assumption is accurate for the case of closely-
spaced independent springs, it breaks down when the founda
tion is a continuum. This is particularly true when the founda
tion material has a high Poisson's ratio. In an attempt to 
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reduce the errors, Biot (1937) considered the cases of a beam 
on a narrow semi-infinite wall and a beam on a three-
dimensional semi-infinite continuum. Only with proper ad
justment of the foundation stiffness, k, could the Winkler 
solution be brought into even approximate agreement with 
Biot's solutions. Despite inaccuracies, the Winkler approach 
has remained a widely used and relatively simple solution for 
these beam problems. 

When a Winkler-type continuum foundation is utilized for 
plate solutions even greater inaccuracies arise, because the 
constraint occurs in two directions. If Poisson's ratio is zero, 
the Winkler assumption that restoring pressure at a point is 
proportional to the deflection at that point is valid. If 
Poisson's ratio is greater than zero, the restoring pressure is 
actually a function of the entire plate deformation field. The 
kernel is heavily weighted towards the localized region around 
the point of interest. Since slopes and displacements are con
tinuous, the Winkler assumption remains reasonably accurate 
if the proportionality constant is chosen to reflect Poisson's 
ratio (Timoshenko and Woinowski-Krieger, 1959). As ex
pected, however, the accuracy of this approximation becomes 
worse as Poisson's ratio increases. Of interest in the current 
study is the case where the foundation is an elastomer and 
Poisson's ratio is a maximum, v — 0.5. 

Although three-dimensional elasticity could be used to solve 
this problem, the technique would be very cumbersome, 
especially with the two materials required. In the spirit of 
classical plate studies, this work proposes an alternate govern
ing differential equation which is valid for certain geometries 
involving elastomeric foundations. It provides a simple closed-
form approach to accurately accommodate the restoring force 
distribution. 

Problem Formulation 

Figure 1 illustrates the problem being addressed. The 
thickness of the elastomer will be assumed to be small com
pared with the oscillation spacing of the deflected plate. The 
requirement for bonding between the surfaces ensures no slip
ping, although as shown by Thornton et al. (1988), very little 
slipping actually occurs between unbounded elastomer and 
substrate for the high coefficients of friction typical of 
elastomers. Bonding also implies that negative pressures at the 
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dx 
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Fig. 1 Representative element of a plate on a thin elastomeric 
foundation 

surface can be maintained. The elastomer is treated as incom
pressible, although Dillard et al. (TBP) have provided a simple 
correction technique which could be applied to account for 
compressibility. The assumption of incompessibility, 
however, is believed to be quite valid unless the elastomeric 
foundation is extremely thin. The assumption of a rigid 
substrate is quite acceptable if the substrate has a high 
modulus compared to the elastomer, and if the elastomer is 
not extremely thin. We also require that the deflection of the 
plate be small according to plate theory definitions, and in 
comparison to the thickness of the elastomer. 

Classical plate theory yields the governing differential equa
tion as: 

a4w 
dx4 + 2-

d4w 
+ 

d4w (p-q) 

D 
(1) dx2dy2 dy* 

where w is the plate deflection, p is the applied loading 
distribution, q is the restoring pressure exerted by the founda
tion, and D is the plate bending stiffness given by 

- Et' 
~ 12(1 -v2) ' 

For the Winkler foundation, q = kw, where k is the spring con
stant of the support. 

When a bonded elastomeric block is compressed, the total 
force exerted may be thought of as the superposition of the 
force required to deform a perfectly lubricated block, and the 
force generated when the surfaces of the freely expanded 
block are forced back to their actual bonded location (Gent 
and Meinecke (1970)). For blocks with large shape factors, the 
pressure due to the former case is completely negligible. (The 
shape factor is defined as the ratio of the area of one loaded 
surface to the total exposed area.) Because of the assumption 
that the elastomeric foundation is thin compared with the 
oscillation spacing of the plate, we also may assume that the 
former term, which is given by/! =Eee, is negligible, as will be 
substantiated later in the paper. Here, Ee is Young's modulus 
of the elastomer and e is the strain given by e = w/h, where w is 
the deflection of the plate and h is the thickness of the 
elastomer. In essence, we have discarded the term which is 
equivalent to the Winkler foundation and will retain the 
pressure term which arises from the shearing stresses in the 
displaced elastomer. 

Figure 2 shows a differential element of the plate and foun
dation prior to and after deflection. Assuming that the 
pressure is constant throughout the thickness of the elastomer, 
normals through the elastomer are deflected into parabolas. 
The demonstration of this is analogous to the parabolic veloc
ity profiles arising in laminar flow. The displacements of the 
vertexes of the parabolas in the x and y directions are given by 
u{x, y) and v(x, y), respectively. Because the elastomer is 

PLATE 

ELASTOMER 

I u(x) u(x + dx) 

Fig. 2 Differential element in xz plane prior to and following deflection 

assumed incompressible, the volume displayed by vertical mo
tion of the plate leads to spatial variations in u and v defined 
by: 

du dv 3w 

dx dy 2h 

These changes in u and v give rise to changes in shear strains 
and stresses and, hence, changes in pressure within the 
elastomer. These may be expressed by: 

3ar 8G 
(3d) dx 

9<T„ 

h2 

8G 
(3b) 

dy h2 

where ax and ay are normal stresses, and G is the shear 
modulus of the elastomer. Because the elastomer is thin com
pared to plate oscillation spacing, we further find that the 
stresses within the elastomer are approximately equal: 
ox*zoy~oz=> —q, where q is the hydrostatic restoring 
pressure. The validity of this step is justified by considering 
the high degree of constraint imposed by our requirements on 
elastomer thickness (Gent and Meinecke, 1970). 

Differentiating equations (3a) and (3b) with respect to x and 
y, respectively, and substituting into equation 2, we obtain: 

d2q d2q l2Gw 

dx2 dy2 b? ' 

Taking the Laplacian of the biharmonic equation (1), 
substituting in equation (4), we obtain 

d6w _ d6w . d6w 

(4) 

and 

dx6 + 3 
dx*dy2 + 3 

-\6w 

dx2dy4 

d6w 

dy6 

~H-l r d2p d2p 

dx2 dy2 (5) 

or 

where 

V6w-A6>v = 
D 

V2p 

x6 = 
12G 

Dh3 (6) 

Before solving this equation, we shall first examine the special 
case where the solution is only a function x. 

Solution Independent of Y 

If the loading and boundary conditions are independent of y 
for a plate which is infinitely wide in the y direction, equation 
(5) simplifies to 

1 <Pp 

dx6 -\6w--
D dx2 (7) 
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Fig. 3 Comparison of Winkler and elastomeric foundation solutions 
for plate deflection under a line load 

In operator form, the homogeneous equation becomes 

(D6-X6)w = 0 

where the boldface D represents the differential operator. Fac
toring this, we obtain the following roots 

X 
D D, D3 = - -j- v -1 + ;V3 

D 5 = - V - 1 - / V 3 D 4 = V - 1 + J V3 
2 

D6= A^ry^T^ . 
2 

Making use of De Moivre's Theorem, we can obtain 

/ 1 n / 3 \ / 1 /V3\ 
D 3 = - X ( - + — ) D4 = x ( - + —) 

= - X ( T - — ) D6=x(— --T")-D 

The homogeneous solution takes the form 

w(x) =Ale
Xx+A2e~Xx + e~ 

' ( • 

A, cos • 
V3 

Xx 

+ A4 sin — - Xx 

Let us consider two loading cases. 

V 3 ^ A • V ^ 

cos Xx+At sin \x 
2 2 

)-(9) 

Case I: Concentrated Line Load 

We will apply the solution for all x>0 for a concentrated 
line load of magnitude p at x = 0. Since the deflection must 
vanish at large values of x, we conclude thaty^ =A5 =A6 = 0. 
The remaining constants may be evaluated by requiring that 
u(0) = 0(0) = 0, where d is the slope of the plate, and by enforc
ing equilibrium such that 

{
oo 

q(x) dx. 

The resulting solution for the plate deflection is given by 

P™< — c o s ^ X x ] w(x) = : + 2e~ 
72G t. 2 

for all x>0. 
We now compare this with the Winkler solution for an 

equivalently loaded plate (Seely and Smith, 1952): 

w(x)-
2k 

e ^ t c o s /3x + sinjSA:] (13) 

where the tilde will represent the corresponding Winkler solu
tion and 

k 

where k is the spring constant given as stress/unit 
displacement. 

We immediately note several differences in these two solu
tions. The decay exponent for the periodic term of the 
elastomeric foundation solution is smaller than the periodic 
argument, implying that the oscillations will decay more slow
ly than the Winkler solution. Furthermore, the e_x* term 
represents a net shift of the deflection in the vicinity of x= 0. 
This results in 

so that 

i oo 

w(x) dx = 0 

Lim u(x) =0, 

(14) 

a requirement stemming from the incompressibility of the 
elastomer and the need for pressures to be finite. 

If k for the elastomer is taken as 

k = 
h 

3G 

IT 
as would be measured experimentally with a small shape fac
tor specimen, totally unreasonable values for the elastic curve 
are obtained. A more realistic k value can be chosen such that 
the deflection under this line load is equivalent to the plate on 
the elastomeric foundation by letting: 

k<25Mxw) • (15) 

By setting vv(0) = w(0), we note that the maximum moments 
and restoring pressures for the elastomeric case may be related 
to the Winkler case according to: 

M(0) = 1.2114 M(0) (16a) 

and 

?(0) = 0.7338 q(0). (16b) 

Figure 3 illustrates the elastic curves for the two foundations 
normalized according to equation (15). As would be expected 
from equation (14), the displacements of the plate on the 
elastomeric foundation must average to zero, resulting in a 
large negative displacement adjacent to the applied load which 
is much more pronounced than the Winkler solution. As noted 
earlier, the decay rate for the Winkler solution is much faster 
than for the elastomeric founation. It is interesting to note 
that while the zero crossings for the Winkler solution occur at 
regular intervals, the elastomeric solution does not because of 
the leading exponential term. 

Figure 4 gives the diagrams for plate shear, plate bending 
moment, slope, deflection, elastomer displacement, and 
elastomer pressure. Sign conventions are based on those given 
by Timoshenko and Woinowski-Krieger (1959). The equations 
for these parameters are given by: 

V(x) = -^-\~e-u-2e-xnxco& — Xx] (17a) 

M(*)=J-[, V3 V3 
e te + e~

x/2x cos Xx-V3 sin \x 

(1Tb) 
/?X4/!3 V3 V3 

d(x)= ^—^-je-x*-e-x/2*[cos — Xx+V3sin — Xxl] 

(17c) 
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w(x) = 
p\3h3 

72G — e~ 
: + 2e~ "cos 

V3 f») (lid) 

u(x) = 

g(x) = 

p\2h2 

48G 

M l 

V3 : cos —— \ x - V 3 sin \x\ J 

(lie) 

: + e-
r V3 , V3 
cos — - Ax+V3 sm ~kx ]} 

(17/) 
for all x>0 except V(x) which is valid for all x>0. We note 
that u(0) = 0(0) = 0 as required and that V(Q+) =p/2, as would 
be expected. 

To evaluate our assumption that the / , is small compared to 
q, we use/ , =Eew/h, and equations (lid) and (17/) to obtain 
the ratio of/, and q at jt= 0: 

/.max _ /.(0) _ X2^2 

<7max 9(0) 8 
concluding that as long as \2h2/S is small, the contributions 
f r o m / , are negligible. The ratio o f / , (X)/<7(A:) remains very 
small except for very localized regions where q(x) —0 and the 
ratio is unbounded. This is illustrated in Fig. 5 for a case of 
\2h2/8= .0036 using the same data as for Fig. 4. Since 
/ , (x)/q(x) is negligible except at localized singularity points, 
the / , contribution may be disregarded. We may express 

\2h2 
9G(l - v2W 

32 Et3 

and note that for typical values of G for rubber and E and v 
for steel, the quantity 

h 
0.012 

gives the approximate contribution of/, at the point of load 
application, implying that reasonable values of h and / may be 
accommodated by the model. 

C a s e II: Concentrated Line M o m e n t 

If a uniform concentrated moment is distributed along 
x = 0, solutions may be obtained simply by differentiating the 
solutions to Case I. Thus , the following are valid for x > 0 ; ex
cept M(x) which is valid for x > 0: 

V(X): 

M(x) 

£ ^ . r e - X x + e - X / 2 j r r 

[-

cos AA- + V3 sin AX 

2 2 

6 

>(*) = 
M0\

5h3 

12G I-
-V3 

-2e-

V3 

V3 ") 
^ /2*cos AX[ 

2 J 

cos Xx 
L 2 

>]} 

(18a) 

(18*) 

(18c) 

M0A4/*3 r . 
w(x)= — le-^-e-v2* 

12G I 
cos 

V3 1 
+ V3 sin \x 

2 J 

V 3 i 
Xx 

2 

] 
M0\

3h2( . . . . V3 
u(x)= ° e - ^ + 2e" x / 2 j ( cos v 48G ( 2 

a(x\ M ^ r-^ l r~W2x\ 
H\X) I 

V3 
— V3 sin 1 

2 

" V 3 x cos Ax 
2 

-]} 

Xx-] 

(I8d) 

(18c) 

(18/) 

These solutions for concentrated line forces and moments 
can be superposed to give results for arbitrary loading func
tions within the limitations set forth for plates independent 
of y. 

General So lut ion 

Returning to the governing differential equation (5), we 
now seek the general solution when the loading and /o r boun
dary conditions may be functions of y, or when the plate is not 
infinite in the>> direction. To illustrate the solution technique, 
we will turn our attention to a simply-supported plate with no 
constraint imposed on the exposed rubber surface, i.e., q = 0 
along the edges. The Navier solution for the deflection of the 
plate takes on the form 

t» oo 
rnirx . my 

sin —-— w(x,y)= E E ^m„sin 
m = l n = \ " l 

If we assume the applied load to be of the form 

CO 00 

p(*>y)= E Ep™ 
m = 1 n - 1 

. rnirx my 
sm sm 

a b 

where 
4 p a p b 

Pmn= —r\ P(X, 
ao Jo Jo 

. rnirx niry 
,y) sin sin —-— dy dx, 

a b 

(19) 

(20) 

(21) 

we obtain 
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DEFLECTION UNDER A CONCENTRATED 
LOAD AT CENTER OF A SQUARE PLATE 
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Fig. 6 Deflection of a square plate loaded at the center with a concen
trated load as a function of plate length 

W (22) 

This is in contrast to the equivalent solution from a Winkler 
foundation which would be given by 

p 
~ •* mn 

W,„„ = . (23) 

°[(rr) + ( T H -
It is convenient to define the influence coefficient K{x,y; f, 

r\) as being the deflection at (x,y) due to a unit load applied at 
(f,rj). We find that for the elastomeric foundation, the in
fluence coefficient may be written as: 

K(x,y; ?,n) 

Oo oo 

,r/w7r\2 /nv w?rf . nin) 
sin sin 

->([(^)"+(f)TH 

For illustration purposes, we consider a steel plate (£" = 210 
GPa, p = 0.3, ^ = 0.02 m) on a thin elastomeric foundation 
(G= 1.3 MPa, h = 0.02 m). By varying the size of the plate, we 
can plot K(a/2, a/2; a/2, a/2,) and K(a/2, a/2; a/2, a/2). We 
have used the normalization scheme of equation (15) for plot
ting the results in Fig. 6. We do see a pronounced peak in the 
elastomeric foundation solution which coincides with the 
simply-supported boundaries being in register with the natural 
oscillation spacing of the plate. This is much more pro
nounced than for the Winkler solution. Comparison with the 
solution for no foundation shows good agreement for very 
small plate dimensions, as would be expected. 

Conclusions 

It has been shown that a Winkler foundation is inadequate 
to accurately model a thin elastomeric foundation bonded to a 
flexible plate and rigid substrate. Closed form and series solu
tions are presented for several cases, and it is seen that the 
deflection oscillations on an elastomeric foundation decay 
much slower than on a Winkler foundation. Also, by 
matching the k of the Winkler foundation to that of the 
elastomer for maximum deflection, the oscillation periods are 
significantly different. 

The solution technique does depend on the assumption that 
the oscillation periods are large in comparison to the thickness 
of the elastomer. For extremely accurate predictions, this re
quires that the elastomer be several times thinner than the 
plate for typical engineering materials. On the other hand, 
reasonably accurate results are expected even if the elastomer 
is somewhat thicker than the plate. The elastomer has been 
assumed to be incompressible in the current analysis. 
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for the Winkler foundation. 
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The Membrane Shell as an 
Underconstrained Structural 
System 
Statical-kinematic analysis is employed to provide a new perspective on the struc
tural behavior of membrane shells and the related limitations of the linear mem
brane theory. The obtained results include a resolution of an apparent paradox in 
the statics of membranes, a description and explanation of the peculiar behavior of 
toroidal membranes with an arbitrary cross-section, and a stronger version of a cen
tral theorem in the membrane theory. 

Introduction 

Underconstrained structural systems have fewer indepen
dent constraints (structural members) than necessary to be 
geometrically invariant. Nevertheless, such systems are widely 
used in engineering practice including many conventional ap
plications. In particular, this is the case with exceptional 
underconstrained systems which lack kinematic mobility and 
possess a unique geometric configuration (multifreedom in
finitesimal mechanisms). 

The basic properties of underconstrained systems are 
studied by means of statical-kinematic analysis, both generic 
and system-specific. This analysis deals with structural 
topology and geometric invariance; relations between external 
loads, internal forces, and equilibrium configurations; in
finitesimal or finite kinematic mobility; statical and kinematic 
indeterminacy; and other local or global features of structural 
behavior not related to the material properties (constitutive 
relations). 

For the purposes of statical-kinematic analysis, a structural 
system can be modeled as an assembly of material points 
linked by ideal positional constraints representing the struc
tural members. Then the kinematic properties of the system 
are fully determined by a compatible set of constraint equa
tions 

1,2,. (1) Fj (X{, . . . Xn, . . . XN) - 0, 
relating the N generalized coordinates Xn of the system. The 
linearized equations derived by differentiating equation (1) at 
the solution point X„ = X° involve infinitesimal virtual 
displacements x„: 

F?„X„=O ( F t a - a ^ / a j f j . (2) 
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(Here and in the following equations a repeated subscript 
denotes summation.) If the rank r of the Jacobian Ff„ is r<N, 
the system generally allows finite kinematic displacements and 
can acquire a variety of geometric configurations. However, 
there exist exceptional systems where X„ = X°„ is an isolated 
solution of equations (1) in spite of r<N (Kuznetsov, 1988). 
Then the system lacks kinematic mobility and possesses a 
unique configuration. Such exceptional systems are in
finitesimal mechanisms (like, for example, a rectilinear pin-
bar chain with both ends fixed) and belong to two fundamen
tally different types. The first one is a degeneration of a 
geometrically invariant system resulting from improper 
(rather than insufficient) constraints, whereas the second is a 
singular case of a variant, underconstrained system. In both 
cases, a change in the system geometry may lead to an increase 
in the rank r, but the complete rank restoration (r = N) is 
possible only for the first type. Thus, upon exiting from the 
singular configuration (as a result of constraint variation), an 
infinitesimal mechanism becomes an ordinary system of the 
respective generic type. On this basis, the two singular types 
can be classified respectively as quasi-invariant and quasi-
variant. 

By employing the principle of virtual work, equilibrium 
equations in the unknown generalized constraint reactions, A,, 
are obtained from (2): 

n*i=Pn (3) 
where an TV-dimensional load vector P„ is called an 
equilibrium load if it is representable as a linear combination 
of the matrix columns. Thus, for a system in a given geometric 
configuration there exist r linearly-independent equilibrium 
loads. For a geometrically invariant system, r=N and any 
load is an equilibrium load - a statical criterion of invariance. 

Under an equilibrium load, the response of all types of 
systems is the same: Equilibrium is attained without 
kinematic deformations. This contrasts with the behavior of 
an ill-constrained (i.e., improperly or insufficiently con
strained) system subjected to a general load. Because of r<N, 
equilibrium in the initial configuration is impossible, which 
makes the problem not only geometrically nonlinear but, in a 
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certain sense, nonlinearizable. Specifically, the load increment 
method commonly used for nonlinear problems is, as a rule, 
inapplicable in this case. Indeed, solving (2) in terms of (TV— r) 
displacements xp designated as independent enables all 
displacements to be expressed as 

xm = ampxP (amp = 1 at m=p). (4) 

After introducing 

K =n„AiCmp (Fimn = d^Fi/dXmdXn) (5) 

an incremented version of equilibrium equations (3) can be 
written as 

b„pxp+Fin\i=p„ (6) 

where X,- and p„ denote small increments of the corresponding 
quantities in (3). When the system is initially force-free, i.e., 
A, = 0, the first term in (6) vanishes and, since r<N, a solu
tion in terms of X,-, in general, does not exist regardless of how 
small is the load increment. Like the original system of equa
tions, the incremented one allows a solution only for 
equilibrium loads. This feature underlies the complex 
behavior of initially stress-free ill-constrained systems. In 
statics, small perturbations may cause large displacements 
(instability); in dynamics, a chaotic behavior may ensue. 

The situation is quite different when initial forces A, are 
present, due to either prestress (possible in singular systems) or 
an already existing equilibrium load. Although under a 
general load increment the system still must change its con
figuration before coming to equilibrium, equations (6) can be 
solved yielding all (TV—/-) independent displacements xp and r 
force increments X;. For a sufficiently small/),, the solution is 
accurate; otherwise it requires iterative refinements. An effi
cient iterative procedure1 is based on a decomposition of a 
given external load P„ into equilibrium, P*, and non-
equilibrium,^, components 

P„=P:+P„ (?) 

such that P* is the projection of P„ onto the column space of 
the equilibrium matrix Fin, thereby minimizing the magnitude 
of pn. This leads to the uncoupling of equation (6) so that the 
internal forces and the independent displacements are 
evaluated separately in alternating iterative steps. Moreover, 
there is no need to calculate P* explicitly since the corre
sponding internal forces are found immediately by solving the 
overdetermined system (3) using the least squares method. 

Although the foregoing statical-kinematic analysis deals 
with discrete underconstrained systems, it provides a useful in
sight and a conceptual framework for an analysis of con
tinuous underconstrained systems as well. Among these, the 
membrane shell is the most interesting. 

A Membrane as an Underconstrained System 

A membrane shell is modeled analytically as a material sur
face devoid of bending stiffness and resisting only tangential 
(in-surface) forces - normal and shearing. Constraint idealiza
tion, whereby the membrane is assumed inextensible, reduces 
membrane deformations to isometric bending, smooth or 
piecewise smooth. The latter is characterized by curvature 
singularities over isolated lines or a network of lines; it occurs, 
for example, in a snap-through or buckling of rigid shells and 
as wrinkling in "soft" membranes. Since piecewise smooth 
bending cannot be prevented by any contour supports, a mem
brane always possesses this form of kinematic mobility. Thus, 
a membrane is an underconstrained structural system, either 
geometrically variant or quasi-variant. 

In this context, the ability of an adequately supported mem-

S. A. Burns, Computer program CHAIN, Department of General Engineer
ing, University of Illinois at Urbana. 

brane to equilibrate smooth surfaces loads in its original con
figuration demonstrates only that these are equilibrium loads 
for this underconstrained system. Furthermore, even within 
this class of loads,-a membrane generally cannot be considered 
geometrically invariant. The fact is that, in order to complete
ly immobilize a membrane, smooth bending must be preclud
ed as well. This can be achieved by attaching a rigid bar to the 
membrane or by constraining its edge. However, a rigid bar or 
edge supports generally produce a line reaction with a normal 
component which cannot be equilibrated by the membrane 
without a change in geometry. Hence, the membrane still does 
not satisfy the statical criterion of invariance. 

The above observations are analytically reflected in the in
herent nonlinearity and nonlinearizability of the pertinent 
equations, a characteristic feature of underconstrained 
systems. Indeed, in the simplest, von Karman-type nonlinear 
formulation (small strains, finite rotations), the equilibrium 
equations for a membrane are 

(BTl)a-BaT2 + (AS)f)+AliS = 0 

(AT2)li-A^Tl+(BS)a+BaS = 0 

(JBTt)aWa/A + (AT2)p W„/B + {SW„)a + (SWa)e (8) 

+ BTllAai+(Wa/A)a]+AT2lBa2 + (Wfi/A)fi]=PAB. 

Here, 7\ , T2, and S are the membrane forces, A and B are the 
Lame parameters (metric coefficients), ax and a2 are the prin
cipal curvatures, Wis the normal displacement, P is the nor
mal surface load, and the subscripts a and /3 denote partial 
derivatives. The first two of equations (8) are linear and the 
third one can be linearized as follows: 

m.W. + T^wJB+it.W. + T^wJBJ/A 

+ [«2pWti + T2fswfi)A+(t2Wfi + T2w0)Ali]/B 

+ saWl3 + S!:twl3+sl3Wa + SpWa + 2sWae + 2Swali 

+ ABalt1+BTl(wa/A)a+ABa2t2+AT2(wl3/B)li=pAB (9) 

where, as before, small letters designate small increments of 
the corresponding forces and displacements. 

For an initially stress-free membrane, only the two 
underscored terms survive linearization and appear in the cor
responding algebraic equation of the linear membrane theory. 
Without the highest derivative terms in the last equation, the 
system of equations degenerates and fails to produce the 
number of arbitrary elements needed to satisfy all boundary 
conditions. In terms of the general statical-kinematic analysis, 
this known failure of the linear membrane theory means that 
the latter is confined to the class of problems where the surface 
and edge loads, including the support reactions, constitute 
equilibrium load combinations. On the other hand, there is no 
such limitation for a membrane with pre-existing internal 
forces. The entire situation closely parallels the one previously 
discussed regarding the generic linearized equations (6) for 
discrete underconstrained systems. 

The degeneration of the tangent operator in the statics and 
dynamics of membranes might be accompanied by a change in 
the equations type (Stoker, 1964; Zak, 1982). In statics, the 
outcome is an ill-posed boundary value problem with a 
nonelliptic operator (for membranes with Gaussian curvature 
K<0). This prompted Marsden and Hughes (1983) to call 
membrane theory "linearization-unstable," which is yet 
another manifestation of the membrane being an under-
constrained structural system. 

Implications for the Linear Membrane Theory 

One of the cornerstones of the linear membrane theory is 
the following theorem (Gol'denveizer, 1953; Vekua, 1959). 

If the homogeneous geometric problem has J linearly-
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Fig. 1 Toroidal membrane under smooth self-balanced surface load 

independent nontrivial solutions £/,, Vj, Wj (J = 1,2,. . . J), 
the conjugate statical problem of the membrane theory can 
have a solution only if /integral conditions 

f \(XUj+YVj + ZWj)ABdad@- \ LMjds = 0 (10) 

are satisfied. (X, Y, and Z are surface loads, L is a tangential 
load applied along the edge in a given direction /, and M, is the 
projection of the edge displacements on the direction /.) 

According to the theorem, for membranes satisfying its con
dition, the statical problem only can (but not always does) 
have a solution. Specifically, for membranes of positive Gaus
sian curvature, a solution (perhaps, nonunique) was shown to 
exist, while in a general case the question remains open. An ex
ample (or, rather, a counterexample) of a toroidal membrane 
was used to illustrate the general case. In differential geometry 
a torus is shown to be infinitesimally2 rigid: It does not allow 
even infinitesimal smooth bending. By implication, the 
number of nontrivial solutions to the homogeneous geometric 
problem is zero so that conditions (10) are assuredly met and 
the membrane should be able to support any smooth self-
balanced surface load. Yet, it is easily seen (Fig. 1) that 
equilibrium in the original configuration is impossible for an 
axisymmetric load with equal and opposite axial resultants for 
the inner and outer segments of the torus. (Such a load would 
produce a transverse shearing force along the parallel circles 
separating the two segments.) 

However, a closer look at the conditions (10) shows these to 
be nothing but the implementation for an inextensible mem
brane of the principle of virtual work which is known to be 
both necessary and sufficient for equilibrium. Then how could 
it be possible that the statical problem does not always have a 
solution, if conditions (10) are satisfied? 

The resolution of this apparent paradox lies in a subtle point 
concerning the nature of nontrivial solutions to the 
homogeneous geometric problem premised in the theorem. 
The fact is that a toroidal membrane is rigid only within the 
class of smooth bending; outside of this class its behavior is 
like that of a rectilinear pin-bar chain. For example, for a two-
bar chain (Fig. 2), deflection y i s related to the bar strain, e, 
by 

/ 2 +Y 2 = [/(l+e)]2 (11) 

wherefrom 

y^/V2"£. (12) 

Thus, the system allows infinitesimal transverse displacements 
at the expense of second-order bar elongations; it displays the 
enhanced deformability of a singular system compared to an 
invariant system where displacements are related to the strains 
linearly. Nevertheless, when the bars are perfectly rigid (e = 0) 
the resulting homogeneous geometric problem still has only a 
trivial solution. 

On the other hand, when equation (11) is linearized, 

This geometric term might appear controversial to a mechanician. 

Journal of Applied Mechanics 

Fig. 2 Infinitesimal displacement in pin-bar chain 

2Yy = 2eP- (13) 

a solution for the incremental displacement, y, is 

y = eP/Y. (14) 

At e = 0, Y= 0, the solution is indeterminate indicating that the 
system is singular (quasi-invariant). 

As it happens, a torus also possesses this type of mobility 
but, since the corresponding infinitesimal displacement is not 
smooth, it escapes the test (10). It is not difficult to identify 
smooth surface loads which perform work over this virtual 
displacement and, therefore, cannot be equilibrated by the 
membrane. (Obviously, this is the case with the axisymmetric 
load shown in Fig. 1). In other words, even in the absence of 
line constraints (e.g., supports) smooth surface loads can give 
rise to nonsmooth infinitesimal bending. 

Infinitesimal Mobility of Toroidal Membrane 

The infinitesimal mobility of an inextensible toroidal mem
brane can be detected by a linear analysis establishing either (0 
the existence of a nontrivial (although indeterminate) solution 
to the linear homogeneous geometric (strain-displacement) 
equations or (ii) the possibility of unbounded displacements at 
the expense of small strains. These two equivalent signs of a 
degenerate tangent operator exhibit the inadequacy of the 
linear model. The linear strain-displacement equations for an 
axisymmetric membrane are 

el=ua/A-alw, e2=Bau/AB-a2w (15) 

where ex and e2 are, respectively, the meridional and hoop 
strains. 

Choosing as an independent variable the angle 6 between the 
normal to the surface and the axis of revolution (Fig. 1) 
enables the metric coefficients and the principal curvatures of 
the torus to be taken as 

A=R,B = r = R0+Rsmd,ol=R,(r2 = r/sm6. (16) 

Exploring first the alternative (/), a nontrivial solution to 
equations (15) withe, = e2 - 0 is obtained: 

" + " for O < 0 < T T 

u= ±Asin0, w= ±Acos0 (17) 

" - " for 7T<0<27r 

where A is arbitrary. Being physically inconsistent because of 
discontinuous w, solution (17), nevertheless, formally satisfies 
the homogeneous geometric equations (note that a2 = 0 at the 
crowns, where 0 = 0, ir). 

The alternative check (ii) confirms the outcome. Assuming, 
for example, constant strains and symmetry, with respect to 
the equatorial plane, yields the following solution to equations 
(15): 

u/R= (e, -e2)sin01ntan0/2 + e2(.Ro/7?)cos0 
(18) 

w/R= (e, -e2)cos01ntan0/2-e2[l + (R0/R)sm6] 

Almost everywhere in the membrane, the normalized 
displacements are of the same order as the strains but in the 
vicinity of the crown, w/R can exceed the strains by an ar-
bitrarilylarge factor if ei 5* e2. 

Solutions (17) and (18) to the linearized geometric equations 
indicate infinitesimal first-order mobility requiring only 
second-order strains. Moreover, the solutions provide enough 
clues to the actual character of the corresponding displace
ment field so that its geometric possibility can be 
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I a) b) 

Fig. 3 Nonsmooth infinitesimal bending of torus; (a) Overall deforma
tion pattern, and (b) Deformation stages 

demonstrated explicitly (Fig. 3). First, the inner and outer 
segments of the torus undergo an infinitesimal, rigid-body 
mutual axial shift 2A accompanied by an eversion of the nar
row annuluses 2-3 and 2 ' - 3 ' (Fig. 3(a)). So far, the deforma
tion is a nonsmooth, strain-free bending with 0 = 0„ being the 
line of angular discontinuity. However, in the obtained con
figuration, the membrane still cannot support the load shown 
in Fig. 1. This requires an infinitesimal tilt, cj>, of the horizon
tal tangents at points 2 and 2 ' resulting in an additional axial 
displacement (Fig. 3(b)) 

2d/R^2<l>6*. (19) 

The displacement d is possible at the expense of strains of the 
order <j>2 whereas the total normalized axial shift 

2(& + d)/R^6t(6t, +2<$>) (20) 

is still of the first order, since 

6„^^2A/R. (21) 

The magnitude of the angular discontinuity at points 3 and 3 ' 
is 

26»4+</. = 2e , . (22) 

The foregoing analysis demonstrates the possibility of 
nonsmooth infinitesimal bending in a torus subjected to 
smooth surface loads. It is the presence of asymptotic lines 
that facilitates this deformation with the very inception of 
loading. Consistent with the behavior of discrete quasi-
invariant systems (Fig. 2), the deformed configuration of the 
torus (with two annular cusps) is geometrically invariant 
within the class of smooth loads. 

It is interesting to compare the described behavior of an 
ideal membrane to that of a toroidal shell with bending stiff
ness. For an elastic shell, Steel (1964) found an almost step
wise jump in the displacement near the crowns. It seems 
logical to expect, that beyond the elastic limit, the displace
ment field should even closer approach the pattern of Fig. 3. 

Quite recently Libai and Simmonds (1988) have raised a 
question: "What happens in a very thin, pressurized toroidal 
shell whose undeformed cross-section does not have points of 
horizontal tangency lying on the same vertical line? . . . We 
conjecture that wrinkling must occur." The deformed con
figurations shown in Fig. 4 represent nonsmooth infinitesimal 
bending of such a shell subjected, respectively, to an internal 
and external pressure. Curiously, to ensure the required 
geometric invariance of the final configuration, the points of 
horizontal tangency vanished altogether. Note that the pro
posed solution, based on the foregoing statical-kinematic 
analysis, is in line with the conjecture on wrinkling with just 
one qualification. Wrinkling is usually taken to mean the for
mation of a uniaxial stress zone (also called a tension field) in 
a membrane not resisting compression. In the presence of only 
a normal surface load, a tension field is known to be geodesic. 

Fig. 4 Infinitesimal bending of torus with noncircular section; (a) Inter
nal pressure and (b) External pressure 

However, this is not the case with the two circular ridges 
representing the key feature of the above deformation pattern. 
These are neither geodesic nor necessarily in tension; 
therefore, a connotation with wrinkling is undesirable. Ob
viously, in a pressurized "soft" toroidal membrane, meri
dional wrinkling is a possibility. 

Conclusions 

(1) A membrane is an underconstrained structural system, 
either variant or quasi-variant. For an initially stress-free 
membrane, the linear theory is consistent only within the class 
of problems involving equilibrium loads and reactions. 

(2) Infinitesimal rigidity, with respect to smooth bending, 
is not synonymous with geometric invariance of a membrane, 
even within the class of smooth surface loads. Membrane in
variance within this class of loads requires meeting one of the 
two equivalent criteria: (a) ability to support any such load 
in the original configuration; or (Jb) impossibility of in
finitesimal smooth or nonsmooth displacements. 

(3) Linear analysis detects both smooth and nonsmooth 
infinitesimal bending. Accordingly, an analytical implementa
tion of the aforementioned criterion (£>) is the absence of non-
trivial solutions to the linearized homogeneous geometric 
problem. 

(4) A stronger version of Gol'denveizer's theorem 
reads: "If the linearized homogeneous geometric problem 
has J linearly-independent nontrivial solutions, the conjugate 
statical problem of the membrane theory has a solution 
(perhaps nonunique) if and only if J conditions (10) are 
satisfied." (Italicized words are those inserted into the original 
formulation.) 
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Thick General Shells Under 
General Loading 
Three equilibrium equations in terms of three displacements are derived in scalar 
mathematics form, by linear, small-strain elasticity principles, for the case of 
general thick-walled shells under general loading. These reduce to well-known forms 
for the particular cases of flat-plates and thick circular cylindrical shells. 
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(1968), and the ASME Medal (1969). As evidenced by this paper, he is still active. 

Introduction 

"Thick-walled" means that the thickness of the shell is so 
large, compared to other dimensions, such as the radii of cur
vature and of twist, that the Kirchhoff-Love approximation of 
thin-shell theory is not applicable. One way of studying such 
shells is by starting with thin-shell theory and adding correc
tions. Another way, which is followed here, is to use the more 
exact methods of three-dimensional, linear small-strain 
elasticity. In doing this it will not be possible to include the 
nonlinear effects of large deflections of the order of the 
thickness. Such large deflections are hardly possible in thick 
shells made of metals or hard plastics in the elastic range; they 
are possible if the material is rubber-like, but study of such 
cases would require not only more complex nonlinear finite-
strain elasticity relations but also more complex stress-strain 
relations. For simplicity, this discussion will be limited to 
shells of uniform thickness, /, made of elastic, homogeneous, 
isotropic material. 

We will use lines of curvature of the undisplaced middle sur
face as two coordinate lines. Defined as lines along which 
there is no twist of the surface, it is known that there are 
always two orthogonal systems of such lines; in cases of sym
metry they are intersections of planes of symmetry with the 
surface, and lines in the surface perpendicular to these. Figure 
1 shows a general point O of the middle surface, with or
thogonal lines of curvature of this surface, labeled a, (3, pass
ing through O and through neighboring points P, Q. We 
assume a, (5 to be independent, continuously-varying par
ameters having constant values along the (3, a lines, respective-
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Applied Mechanics Division, May 18, 1988; final revision, December 1, 1988. 
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ly, taking the values of these parameters at a point as the coor
dinates of that point. 

As third coordinate lines of the right-handed, three-
dimensional coordinate system, we use straight lines perpen
dicular to the surface and therefore to the a, /? lines; these are 
labeled 7, where 7 is the distance from the middle surface. The 
positive directions of the a, /3 coordinates are in the directions 
of increase of a, /3, and the right-handedness of the system 
defines the positive direction of the 7 coordinate. 

Shown also in Fig. 1 is a general point o in the shell wall, 
with coordinates a, fi, 7. If we move a straight line of length 7, 
beginning with the line Oo, over the middle surface and 
perpendicular to it, with the upper end of it in the middle sur
face, the lower end generates a general surface of the shell 
wall, which includes the points o and neighboring points p, q. 
This general surface will also be perpendicular to the 
generating line; this follows from the fact that any motion of 
the generating line near a point such as O can be divided into a 
rotation about O and a movement parallel to its original posi
tion through O, and since either component would generate a 
line perpendicular to the generating line any combination of 
the components will also do so. 

(Hoc, /3,0) 

Fig. 1 
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o(cc,/3,r) 

p(a+da, /3 , r ) 

bd/3 a da 

Fig. 2 

The lines op and oq in the general surface, traced by the 
generating line as it moves along the OP, OQ lines, are also 
lines of curvature of the general surface. This follows from the 
fact that tangents to the OP line at O and to the op line at o are 
obviously parallel to each other because there is no twist along 
the OP line, and similarly for tangents at P and p. Then, since 
the generating line does not rotate about these tangents in 
going from O to P, it does not rotate about the same directions 
in going from o to p, and similarly for line oq. 

Figure 2 shows the general surface with point o, having 
coordinates a, /3, 7, and the neighboring points/?, q, r, which 
have coordinates a + da, ft, 7, and a, /3 + d(3, 7, and a, (i, 
7 + d7, respectively. Since coordinates such as a, /3 need not 
have the same scale everywhere, we introduce variable scale 
factors A, B defined so that Ada and Bd/3 are the distances 
measured along the curves between o and p and between o and 
q. We assume that A and B and their first derivatives are con
tinuous functions of a, (3, 7. 

Due to the curvature of the a line, the a, /3, 7 directions at p 
(shown by the short tangent and perpendicular full lines at this 
point) are rotated relative to the a, /3, 7 directions at o (shown 
by similar short full lines at that point). We assume that these 
angles of rotation relative to the lines at o (or to the dotted 
lines at p parallel to the full lines at o) are continuous function 
of da. They can be expressed as power series in da, in which 
the constant term is absent (because the angle is zero when da 
is zero) and terms of higher power than one can be ignored as 
small quantities of higher order. We can therefore take the 
angle about the /3-direction as a da and about the 7-direction 
as c da, as shown, assuming a, c, and their first derivatives to 
be continous functions of a, /3, 7. There is no rotation about 
the a-direction because op is a line of curvature. Similarly for 
b and d at point q. 

We designate by u, v, w the displacements of the general 
point o in the a, (3, 7 directions, as shown in Fig. 3, and 
assume that u, v, w and their first and second derivatives are 
continuous functions of a, /3, 7. Sincep differs from o only in 
the small change da in a, the displacement of p in the a, J3, 7 
directions (which are rotated relative to a, /3, 7 directions at o 
as shown in Fig. 2) must be u + (du/da)da, v + (dv/da)da, 
w + (dw/da)da, as shown, and similarly for points q and r. 

We now have the displaced and undisplaced positions of the 
general point o and of its neighboring points p, q, and r fully 
described, and can readily calculate the tensile and shear 
"engineering" strains e„, e$, ey, ea/3, ePl, e at o. The original 
length of the segment op, for instance, is Ada, and its change 
in length, using the angles of rotation at/7 in Fig. 2 and taking 
the cosines of these angles as unity and their sines as the angles 
themselves (ignoring small quantities of higher order) is: 

3u 

da 
-da da ) cda _ ( v + da ) 

V da / 

/ d w \ j / du \ , 
— wH da )ada= cv —aw da. 

V da ) V 9« / 

Dividing the change in length by the original length, the tensile 
strain in the a-direction at o is: 

V 

V + 6J3 C 

au. 

^+t> 

op q 

d u , 
+5 rd r 

d r 
5w-

v+^-r- da da 

w - ^ d r 

Fig. 3 

/ du \ 
„ = ( — - c v - « w ) / A 

Calculating the other strain-displacement relations at o in the 
same way, and introducing single-letter symbols f . . . k for 
compactness, where ea = f, e0 = g, e =h , ea„ = i, % = j , 
eya=k, we obtain: 

e = f + g + h, f= (— c v - « w ) / A , 
\ da / 

/ dv , , \ ,„ , dw . / dv \ lL 8= (rdT-du-bv/B> h=-jr' l= bo- + c u ) / A 
dp 

du 
+ (^TT- + rfv 

$7 

3w (-M*'-(£-•*) dp 
+ bv)/B 

dv dw \ du 
+ au I /A + -' k = ( - ^ + 0 U ) 

, .. . . _ _ , . . . . . (1) 
dy V da / d7 

The quantity e, equal to the sum of the tensile strains is, of 
course, the unit increase in volume, or "dilatation." 

The stress-strain relations are given by Hooke's Law, and, 
using equations (1), we find the stress-displacement relations: 

a" = M -u VI ^ [ ( 1 " " ) f + "g + "h] 

(1 + v)(l —2v) 

Tv(f+T^)>^ = 2(1 + «) 

(l + K)(l-2e) 
i(l-v)g + vh + vf] 

E / v \ E . 

= 7 7 7 l g + 7 ^ y ' ^ = 2 ( T 7 ^ J (2) 

7 (1 + P)(1-2J<) 
•[(l-y)h + xf+xg] 

E A. " \ E , = (h-l e ) , (7vrv= k 
l + v V l - 2 x / 7" 2(1 + 1-) 2(1 + v) 

We can now set up the equations of equilibrium of the 
forces in the a, /3, 7 directions on a general element of the shell 
wall at o, which is shown in Fig. 4. The angles between the 
sides of the element due to curvature are, of course, exag
gerated in this figure to make clear their effect, which is very 
important even though the angles approach zero in the actual 
element. The figure shows the unit stresses on each face of the 
element, and the lengths of all the edges, from which the areas 
of the sides and, hence, the forces on each side can readily be 
calculated. Thus, the area of the top side could be approx
imated as the product of the average edge length in each direc
tion, or (A-Bcd/3/2)da(B-Ac?da/2)d/3; however, even this 
much refinement is unnecessary and the area can be taken as 
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^ ^ d V ^ - - ^ ^ ^ c r + d aVa 

- V ~^dr 

Fig. 4 

ABdad/3 since, if we retain other terms, we find that they 
cancel or are of higher order than the significant terms. In the 
final expressions only terms containing dad/3d7 are signifi
cant, those containing more differentials being small quan
tities of higher order and those containing less canceling. 

The terms which must be included in each equilibrium equa
tions are of three kinds: (1) differences between forces on 
opposite sides due to changes in the stresses and the areas on 
which they act, (2) resultants of the main forces on opposite 
sides due to the angle between these sides, and (3) body forces 
B a , Bp, B7 per unit volume in the a, /3, 7 directions, which 
may be functions of a, /3, 7. Ignoring higher order terms, in
cluding the order of the subscripts in the expressions for shear 
stresses, the complete equilibrium equation in the a-direction 
is: 

(°a + -^-da) (B - Adda)df3dy - aa (Bd(3)d7 
\ da / 

+ (a* + -^fdP) ( A - Bcd/3)dad7 - cr^(Ada)d7 

("ya+-~dy) (A-ad7)da(B-bdy)d(3-a7„(Ada)(Bd/3) 

+ afj(Ada)dy(dd0) - aaJBdfi)dy(cda) - aya(BdP)dy (ada) 

+ B„(Ada)(Bd/3)d7 = 0. 

The first three lines are type (1) terms, the fourth line type (2), 
and the last line type (3). Expanding and simplifying as 
discussed, and dividing by dad/3d7, and similarly for the /3, 7 
directions we find: 

Ad (op- <ja) - 2Bcaa0 - (Ab + 2Ba)ay, 

+ B ^ + A ^ + A B ^ + ABB o =0 
da dp dy 
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Bc(a„ - op) - 2Adaa0 - (Bo + 2Ab)at fiy 

baa 
+ A-—f+ B-

9ff„ 

da 
- + AB-

da. Hy 
dy 

+ ABB„ = 0 (3) 

Ba(oa - a ) + Ab(a0 -a ) - Ada - Bco, 
Hy 

+ A B ^ r + A ^ + ABB =0 . 
dy 9a 

Substituting expressions (2) for the stresses, and multiplying 
by (1 + v)/E, these equlibrium equations become: 

Arf(g-f)-Bci-
Ab 

V 2 
Y + Ba)k + 

9e 

1 — 2c 9a 

+ B-
9f 9/ 

9a 9/3 

AB 9k 

~Y"~dy~ 

Bc(f-g)-Adi-(^- + Ab)j + 

l + v 
+ _ _ A B B a 

. de 

\ 2 1-2P dff 

, A
 9§ B 

3/3 

9i AB 9j 1 + K 

- + — ~ + ABB„ da 

A6(g-
Arf 

-h)H-Ba(f-h) k-

97 

Be. 

T~J+7 

(4) 

•2v 
-AB-

9e 

9y 

+ AB-
9h 

37 
3j B 3k l + v 

- + ——ABB =0. 9a 
Equations (4) give three reasonably simple relations involv

ing three unknowns u, v, w, using definitions (1) for the sym
bols e . . . k. To these must be added any edge boundary con
dition which may apply, or corresponding condition of 
cyclical continuity around any circumference, as well as sur
face boundary conditions such as: 

-Pi» - p 0 ; apy> < v = 0 (5) 

where pj and p0 are pressures on inside and outside surfaces, 
respectively, which may be functions of a, /3. Physical 
problems in which cr0y and aya are not zero at the inner and 
outer surfaces are possible but would be unusual. The 
aforementioned relations (4), with accompanying boundary 
conditions, form a complete solution which is applicable 
directly to numerical problems involving any mathematically 
definable elastic shell of any uniform thickness under any 
loading. 

Table 1 gives suitable definitions for coordinate parameters 
a, /3 and corresponding values of the geometric functions A, 
B, a, b, c, d for some common types of shells; these may be 
deduced by simple geometric considerations or by application 
of mathematical theory. 

Table 1 

a 0 

flate plate x y 

right circular cylinder x 6 

sphere 4> 6 

y A 

z 1 

R-r 1 

R-r r 

B a 

1 0 

r 0 

rsin</> 1 

b c 

0 0 

1 0 

sin0 0 

d 

0 

0 

-COS0 

For the cylinder and sphere, R is the middle surface radius and 
r the general point radius; for the cylinder x is the distance 
along the axis and 6 the angle about the axis, clockwise look
ing in the x-direction; for the sphere 6 is the angle of longitude, 
clockwise as seen from the north pole, and </> the angle of 
latitude measured from the north pole. 

As an example of the application of this general theory, for 
a flat-plate relations (1) become: 

9u 9v 9w 9v 3u 
f = , K = 

9x B dy ' 

j = 

n = 9z ' ! 

9w 3v 

9y 9z 

9x 9y 

9w 9u 

9x 9z 

Equations (4) then reduce to the familiar equations of three-
dimensional elasticity in terms of displacement: 
V 2u + ( l / l - 2e )9e /9x= -2(1 + e)Bx/E, etc. 

As another example, for a right circular cylinder the rela
tions (1) become: 

9u 1 / 9v \ 9w 
f=^'=T(¥_ ,) , h=" 3x 

3v 

~3x~ 

1 3u 

361 

3w 
"3x~ 

de 

1 
r 

3r 

3v / 3w \ 3v 

V dd + / 3r~' 

k = -
3u 

~dT 
The first equilibrium equation (4) for the a-direction is then 
the same as for a flat plate given above (but, of course, with a 
different meaning of e and the operator V 2) . The other two 
are also well known: 

V 2 v + -
1 1 3e 

l -2 i / r 90 

- V 2
W + -

1 

1 - 2 K 

9e 1 

1 / 9w \ 

/ 3v \ 

-2(1 + v)^-

Br 

E 

It should perhaps be noted that the thick-wall shell solution 
presented above does not contain as a special case the conven
tional thin-wall solution based on the Kirchhoff-Love approx
imation, or even its linear, small-deflection part. This is 
because these solutions are basically different. Exact solutions 
should convert to the same thing, but this is not necessarily 
true for approximate solutions. Such thin-wall solutions can 
not, in general, satisfy elasticity conditions or surface boun
dary conditions, in spite of being good approximations for the 
purposes for which they are designed. 
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Work-Conjugate Boundary 
Conditions in the Nonlinear Theory 
of Thin Shells 
Work-conjugate boundary conditions for a class of nonlinear theories of thin shells 

formulated in terms of displacements of the reference surface are discussed. Apply
ing theorems of the theory of differential forms it is shown that many of the sets of 
static boundary conditions which have been proposed in the literature do not possess 
work-conjugate geometric counterparts. The general form of four geometric boun
dary conditions and their work-conjugate static boundary conditions is constructed 
and three particular cases are analyzed. The boundary conditions given here are 
valid for unrestricted displacements, rotations, strains and/or changes of curvatures 
of the reference surface. 

Introduction 

Within the nonlinear Kirchhoff-Love theory of shells, 
Galimov (1950) reduced the external forces applied to the 
lateral boundary surface of the deformed shell to three 
statically equivalent effective force resultants and one bending 
couple resultant. In particular, he replaced the torsional cou
ple resultant by additional force resultants by applying the 
same procedure which had earlier been used by Love (1927) in 
the classical linear theory of shells and by Thompson and Tait 
(1883) in the linear theory of plates. The rigorous validity of 
those four reduced static boundary quantities was later con
firmed by Koiter (1964) on the basis of purely static 
arguments. 

From variational considerations it follows that each effec
tive force resultant should perform work on an appropriate 
translation of the boundary while the bending couple resultant 
should perform work on a scalar parameter which describes 
the rotational deformation of the boundary. Such work-
conjugate sets of static and geometric quantities and their 
related static and geometric boundary conditions have been 
established for the classical linear theory of shells as well as for 
various versions of the first-approximation geometrically 
nonlinear theory of shells undergoing moderate rotations (cf., 
Schmidt and Pietraszkiewicz, 1981, and the references given 
there). When strains and/or rotations of the shell material 
elements are not restricted, however, the effective force and 
couple resultants derived by means of purely static considera
tions do not necessarily possess work-conjugate geometric 
counterparts. 
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On the other hand, Novozhilov and Shamina (1975) per
formed a purely geometric analysis of an arbitrary deforma
tion of the shell lateral boundary surface subject to the 
Kirchhoff-Love constraints. They were able to show, in par
ticular, that three translations and one scalar parameter §„ 
completely describe an arbitrary deformation of the shell 
boundary. Unfortunately, the corresponding work-conjugate 
static boundary conditions have not been given in the 
literature. 

A similar geometric analysis performed by Pietraszkiewicz 
and Szwabowicz (1981) led to the conclusion that three 
translations and an additional scalar function «„ of the 
displacement derivatives may also be used to describe an ar
bitrary deformation of the shell boundary. The four work-
conjugate static boundary conditions were then constructed in 
terms of nv as the natural boundary conditions generated by 
the two-dimensional principle of virtual displacements. 

In most other works on the nonlinear theory of thin shells, 
the four static boundary conditions have also been obtained as 
the natural boundary conditions of the two-dimensional prin
ciple of virtual displacements, but this has been done without 
explicit reference to the corresponding geometric boundary 
conditions. Instead, it is usually assumed that the virtual 
displacements and rotations should be kinematically admissi
ble. As a result, in the transformed boundary line integral, the 
bending couple resultant performs virtual work on some varia
tional expression that describes the virtual rotation of the 
boundary but not the variation of a scalar parameter describ
ing the rotation itself. Various forms of the variational expres
sion associated with different natural definitions of the bend
ing couple have been proposed in the literature. In each case 
the question arises whether the variational expression, 
possibly multiplied by a scalar function, can be represented as 
the variation of some scalar function <p of displacement 
derivatives. Only if such a representation is possible, the four 
natural static boundary quantities possess work-conjugate 
geometric counterparts. 

The aim of this paper is to investigate the problem of ex-
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istence and to derive the general form of the work-conjugate 
sets of static and geometric boundary conditions for the 
nonlinear theory of thin shells expressed in terms of 
displacements as basic independent field variables. In the 
analysis it is only assumed that the deformation of the shell as 
a three-dimensional body is completely determined by the 
stretching and bending of its reference surface. This assump
tion is far less restrictive than the usual Kirchhoff-Love con
straints. In particular, the deformation of the shell in the 
direction of the normal to the reference surface is not 
restricted by this assumption. 

A new and entirely general approach to the problem of 
work-conjugate boundary conditions is developed here. It is 
shown that at any point of the boundary, each of the varia
tional expressions associated with the bending couple resultant 
may be regarded as a differential 1-form w on a suitably de
fined six-dimensional manifold of displacement derivatives. 
Then the theorem of Poincare provides the necessary condi
tion for o to be exact, i.e., of the form w = 5<p, and the 
theorem of Frobenius provides the necessary condition for a> 
to be integrable, i.e., of the form /wo = 5<p, where ix is an in
tegrating factor. Applying those theorems to various varia
tional expressions proposed in the literature, their exactness 
and integrability is established. In particular, it is proved that 
the variational expression used originally by Galimov (1951) 
and in various different but equivalent forms in many subse
quent papers, is not integrable. In such formulations of the 
nonlinear theory of shells the four natural static boundary 
quantities do not possess work-conjugate geometric 
counterparts. 

The general procedure is worked out for the transformation 
of a nonintegrable 1-form into an integrable 1-form for which 
the primitive is obtained using a method of integration of total 
differential equations. This primitive is an arbitrary scalar 
function <p of the displacement derivatives. Associated 
general expressions for the natural force resultants and bend
ing couple resultant, which perform virtual work on variations 
of the respective displacement components and of the function 
tp, are derived. Three particular definitions of <p are discussed, 
and the work-conjugate static boundary and corner conditions 
corresponding to the geometric boundary conditions of 
Novozhilov and Shamina (1975) are established. 

Notation and Basic Relations 

In this paper we largely rely on notation used by Koiter 
(1966) and Pietraszkiewicz (1977, 1979). 

The position vectors of the undeformed and deformed 
reference surface M and M of the shell are denoted by r(9 a) 
and f(G°0, respectively, where 9" , a = l , 2, are converted 
(material) surface coordinates. At each point MeM we have 
the natural base vectors aa = dr/dG™ = f,a, the unit normal 
vector n = l / 2 f * a „ X 3 j , the covariant metric tensor aaff = 
aa'&$ with its determinant a = det aa/3 >0 , the curvature ten
sor bap =— aa«n,0, and the permutation tensor ea(3 = 
(a„xa3)»n. The reciprocal base vectors a" and the con-
travariant metric tensor a"*3 are then defined by a"»a/3 = 5$ 
and a"® = a°-a'5, where 8% denotes the Kronecker symbol. In 
what follows Greek indices always refer to the coordinates Qa, 
and for a diagonally repeated index the summation convention 
will be invoked. 

The boundary C of M is assumed to consist of a finite set of 
piecewise smooth curves with the position vector r(s) = r 
[9a(s)], where s is the arc length along C. At each regular 
point M€C we denote the unit tangent vector by t = r ' = aat

a 

and the outward unit normal vector by v = r,„ = aav
a = 

t x n , i>° = e™%. Here, (.)' indicates differentiation with 
respect to the arc length s and (.),,, denotes the outward nor
mal derivative at C. 

Consider now an arbitrary smooth deformation M~M of 

the shell reference surface and let u(9 a) = «xax + wn be the 
associated displacement field such that f = r + u. To 
distinguish all geometric quantities defined on M and on its 
boundary C from those on M and C we use an overbar, e.g., 
a„, n, aa/3, ba$, v, f, etc. The deformation of the shell 
reference surface may then be expressed in terms of the 
geometry of M and the displacement field u. In particular, we 
obtain (cf., Pietraszkiewicz, 1980, 1984a) 

1 , « aa = r , a = a a + u, an = -y-y-1e«f ir,axr, (5, (la) 

ya8=^- (.aafi-aal3) = — (i^-f^-a^), (lb) 

K « I 3 = - ( baP-ba0) = i,a'n,fi + ba0, (lc) 

/ = - ^ - = — e « V « (i,a.i,e) (f,x•*,«)• Od) 

Similarly, along the boundary we have 

r' =afit
fi=t + u'=c,p + ctt + cn, (2a) 

f,r = a^ = v + u,y, (2b) 

n=j~lT,vxi' =nvv + ntt + nn, (2c) 

j = \ f„ x f ' | , f = \ f,„|2| f'|2 - ( f „ w ' ? . (2d) 

For future reference we also note the following relationships 

a, = f' =d,t, a„ = a, xn = dlv, (3a) 

dl=\r'\=\/l + 2ylt,a„ = v.ar, (3b) 

f,„=a,-> (jv + 2yj), (3c) 

a»=y-* (dy-2yvtdr1til)i> + dl-
,tlll, (3d) 

2yvl = 2yaPv"tl1 = i,v.i',2ylt = 2yafit'>te=\f'\2-\. (3e) 

Statement of the Problem 

We are concerned here with the class of nonlinear theories 
of thin shells for which the deformation of the shell as a three-
dimensional body is completely determined by the stretching 
and bending of its reference surface. A common feature of 
various shell theories within this class is that their equilibrium 
conditions may be expressed by the following principle of vir
tual displacements 

( [ (N^8yafi+Mali5Kclfi)dA= [ f (v&i+h'bn)dA 

+ [ (T.5f+ H.5n)cb. (4) 

In (4) all quantities are defined with respect to undeformed 
reference surface M (Lagrangian description) and Cf is the 
part of C where the external boundary force and moment 
resultants T and H are prescribed. The Lagrangian surface 
strain measures ya/3 and Ka/3 are defined by (lb, c) while ri on C 
is given by (2c, d). The mechanical variables N"® and M"e in 
(4) are two-dimensional symmetric second Piola-Kirchhoff 
type stress resultant and stress couple tensors while p and h are 
the external surface force and moment resultants on M. Ex
plicit expressions for N"® M°p and p, h, T, H in terms of three-
dimensional surface and body forces and of the reference sur
face deformation depend on the particular type of nonlinear 
shell theory employed. 

In view of (lb, c), the only independent variable undergoing 
variations in M is the position vector f (or, equivalently, the 
displacement vector u). Therefore, applying the standard 
variational procedure, the principle (4) may also be rewritten 
in the form 
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( T ^ + p ) . 8 f c t 4 + l(J»ve)-5f + (M^!iav0)'Sh\ds 

+ \ [ (T"c j 3 -T) .5f+(M a ' J a a ^-H).5n]cb = 0, (5) 
Jcf 

where 

T»=NaHa + Ma»n,a+{l(,]li^!ax)\K + h\'ae)n, (6) 

and C„, C = C„ U Cf, denotes the part of C where the 
geometric boundary conditions are prescribed. Also, (.)| ̂  in
dicates covariant differentiation in the metric of M. From (5) 
we directly obtain the familiar equilibrium equations 

T'3| /3+p = OinM. (7) 

The derivation of static and geometric boundary conditions 
which are consistent with (4) and (5) is, unfortunately, not 
straightforward and unique and has up until now never been 
performed in complete generality. Note that ri is not an in
dependent variable on C, since by virtue of (2c, d) it is the 
function of f,„ and f . Rather, the independent variables 
undergoing the variation on C are the position vector f (and, 
hence, f ) and its outward normal derivative f,„. Those 
variables, however, have to satisfy two identities 

f'«ri = 0, ri-ri=l along C. (8) 

These identities imply that three components of f (or u) and 
one additional scalar function of position (or displacement) 
derivatives, say, <p(f,v,i'), are necessary and sufficient to 
describe the shell deformation along its boundary uniquely. 
Consequently, the number of corresponding static boundary 
conditions can also be reduced to four. 

The static boundary and corner conditions may be obtained 
from (4) as the natural boundary conditions. Indeed, perform
ing the variation of (2c) directly or varying the identities (8), 
Sri may be written in the form 

5 n = - ^ a " [ n . 5 f , „ ) - ^ a s (n.5f'). (9a) 

The expression (9a) may now be substituted into the second 
line integral of (5) and, subsequently, all terms containing 5f' 
may be eliminated by integration by parts. This leads to a 
reduced form of the line integral along Cf and some additional 
terms at each corner point M„ e Cf, n = 1, 2, . . . , N. For ar
bitrary 8i and ri'Sf,,, along Cf and 5f„ at each M„ e Cf their 
multipliers should vanish identically, which then gives four 
natural static boundary conditions along Cf and three natural 
static conditions at each corner M„ e Cf. 

The derivation of static boundary and corner conditions in 
the way just outlined is not unique, however, since using (8), 
5n may also be expressed in several other, though essentially 
equivalent, forms such as, for example, 

Sri = v {j"<5nj ^ - f' (n«5f'), (9b) 

= — [ a „ {v8n]+vxn(n-5r')]. (9c) 
«, 

Still other forms will be discussed subsequently. Each of the 
possible forms of Sri may be used for the derivation of a dif
ferent set of natural static boundary and corner conditions, 
and each set of conditions will be consistent with the principle 
of virtual displacements (4). In particular, the corresponding 
bending couple resultant, which in each of the cases of (9) is 
defined by a different expression, performs virtual work on 
the respective variational expression ri»5f,„, v>Sn or vdh. 

In the variational principle (4) all virtual displacements are 
assumed to be kinematically admissible, so that the first line 
integral over Cu in (5) must vanish identically. It will be shown 
in Chapter 5 that for any given set of the four geometric 

parameters f, <p, which describe an arbitrary deformation of 
the shell boundary, the kinematically admissible virtual 
displacement field indeed satisfies the kinematic constraints Si 
= 0 and Sri = 0 along C„. In view of expressions (9), the 
vanishing of the line integral over C„ in (5) is also assured by 
the fulfillment of only four kinematic constraints, that is by Si 
= 0 and ri«8f ,„ = 0, j>»Sri = 0 or p«5ri = 0, respectively, along 
C„, and <5fm = 0 at each corner Mm € C„, m = 1,2, . . . , M. 
It is apparent that the constraint Sf = 0 is equivalent to the 
geometric boundary conditions i = i* along C„, and that 5fm 

= 0 corresponds to the geometric corner condition f,„ = i*„ at 
each M,„ € C„, where (.)* denotes the prescribed value. It is 
not immediately obvious, however, what kind of scalar 
parameter should be prescribed on C„ in order to satisfy the 
fourth kinematic constraint n«6f,„ = 0, v'Sn = 0 or vSri = 
0, respectively. The question thus arises whether there exists a 
scalar function v(i,v,i') such that its variation will coincide 
with ri«Sf,„, P'Sn or v«5ri, possibly multiplied by some other 
nonvanishing scalar function fi (r,w,i'). When such a ip does 
exist, the fourth geometric boundary condition takes the form 
<P = <P* along Cu. Only in such a case are the four natural static 
boundary conditions generated from (5) and (9) work-
conjugate to the geometric ones. 

In the particular case of a pure rotation of the shell bound
ary, i.e., when three translations are prescribed, Zubov (1982) 
showed that such a scalar parameter <p(i,v) is the solution of an 
integrable Pfaffian equation. Later particular definitions of 
the parameter <p were discussed by Zubov (1984). In this paper 
we develop an alternative and entirely general approach to the 
problem of existence and of the form of the parameter <p. This 
approach is valid for an arbitrary deformation of the shell 
boundary. 

Integrability Conditions 

Let co denotes any variational expression of the type en
closed in braces in (9). Its general form is 

w=A(f,„,f ') '5f,„+B(f )1„f').5f' ) (10) 

where vector-valued functions A and B must be specified for 
each particular case. 

The co defined by (10) may be considered as a differential 
1-form on the infinite-dimensional space consisting of the 
ordered pairs (f,„ (s), f (s)) of vector-valued functions defined 
along C (cf., Cartan, 1970). However, for our present pur
poses it is sufficient to consider co at an arbitrary fixed point M 
€ C. Then co, as defined by (10), may be regarded as a differen
tial 1-form on the six-dimensional manifold X with local coor
dinates £,, ; '=1, 2, . . . , 6 (in a neighborhood of xa € X), 
which may be identified with components of (f,„, f') in the or-
thonormalbase {v, t, n j . i .e . , 

(Zi) = (vi,v, t»f„, n - r „ , vi', t-i', n-i'). (11) 

Here x„ with local coordinates (1, 0, 0, 0, 1, 0) signifies the 
undeformed state of the shell boundary. Thus, the 1-form co 
may be rewritten as 

6 

i = l 

where 8£,- are understood to be differentials in the usual sense 
and A-„i = 1,2, . . . , 6, are defined as components of (A, B) 
in the base {v, t, n ) , that is 

(Ai) = (vA, t»A, n»A, vB, LB, n-B). (13) 

The interpretation of co as a differential 1-form makes it possi
ble to apply some basic definitions and theorems of the theory 
of differential forms (cf., Cartan, 1970, Westenholz, 1981). 
For convenience they are briefly summarized below in our 
notation. 

The 1-form (10) is said to be exact on X if there exists a 
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scalar-valued function <p (f,„,f'), called the primitive of co, 
such that co = 8<p, i.e., d<p/df,r = A and dip/df = B. Ac
cording to the lemma of Poincare, the necessary condition for 
co, to be exact, is da> = 0, where do> denotes the exterior 
derivative of co. In the notation of (12), the condition du = 0 
reads 

A„j-Aj„ = 0 for ij= 1,2, . . . , 6, (14) 

which implies that the matrix dAj/d^j = Ahj has to be sym
metric. In a sufficiently small neighborhood of x0 € Xthe con
ditions (14) are also sufficient for co to be exact. 

The 1-form (10) is said to be integrable on X if there exist 
scalar-valued functions /x(f,„, f ) , called the integrating factor, 
and <ff(f,„, f') such that /*co = 8<p, i.e., /t_1 (dip/df,v) = A and 
/*"' (df/df) = B. According to the theorem of Frobenius, 
the necessary condition for co to be integrable is coAc/co = 0, 
where A denotes the exterior product. In a sufficiently small 
neighborhood of x0 e X this condition is also sufficient for co 
to be integrable. In the notation of (12) the integrability condi
tion coAdco = 0 takes the form (cf., Ince, 1956) 

Ai(Ak,j-Aj,k) + AJ(Ahk-Ak,i)+Ak(Aj,i-Ai,j) = 0 (15) 

for i,j,k= 1,2, . . . , 6. There are twenty such equations of 
which only ten are independent. It is obvious that the exact 
1-form is integrable and that /tico is exact if co is integrable. 

Now we are in a position to discuss the problem of existence 
of the fourth geometric boundary condition corresponding to 
various variational expressions enclosed in braces in (9). Con
sider the case (9b) for which the natural static boundary condi
tions were given first by Galimov (1951) and were rederived in 
different but equivalent forms in many subsequent papers. In 
this case co = i>«Sri, and the corresponding vector-valued func
tions A and B, calculated with the help of (9a) and (3d), take 
the form 

A=-aJ~1n, B = 2a,-1r17„,n> (16) 

where all quantities on the right-hand sides are functions of f ,„ 
and f' given by (2c,d) and (3e). Differentiation of (16), with 
respect to f,,, and f', gives 

dA , , 
—— = a]j-2 (P<g)n + n®»>), (17a) 
or,, 

— - = y - ' t (g)n-2 / - 2 7, ( ( j i®n + n ( x ) p ) = ( — _ ) , (lib) 
or \ dr,„ / 

an 
—— = «,~2 [Ti®v + Aj-2yl, (v®A + n(g)i>) 
or 

-2j-lyv,-(i®n + miy\. (17c) 

Since (17a) is symmetric and (176) holds, (17c) leads to the on
ly nonvanishing expression 

dB / 98 \ T 

~dF~\dF) =«' ("®'-*®")- <18> 

Therefore, conditions (14) are identically satisfied for any 
combination of /, j € (1 ,2 , . . . ,6) except for (i,j) = (4, 5), 
(4, 6), and (5, 6). As a result, the 1-form co = i>'8n is not exact 
o n X 

If components of (17) are introduced into (15), the in
tegrability conditions are satisfied identically for any com
bination of i, j , k € (1, 2, . . . , 6), except for such combina
tions in which any two of three indices /, j , k assume the values 
(4, 5), (4, 6) or (5, 6) while the remaining third index assumes 
the value 1, 2 or 3. For example, it is easy to see that for (i,j, 
k) = (1, 4, 5) the left-hand side of (15) is a,"[j~' (vii)(n'i), 
which does not vanish identically. As a result, the 1-form co = 
P«5n is not integrable on X. 

The variational expression i>-8n may itself be represented in 
several different but equivalent forms. If/8 = ii — n is the dif

ference vector, then 5n = 8fi and P«<5n = i>»5|8 = 6/3,,, which 
was used by Pietraszkiewicz (1977). However, in the expres
sion 5/3„ the symbol <5 should not be understood as the symbol 
of variation, since so defined 8$„ ^S(j»»j3). 

The total rotation of the shell boundary is described by the 
total rotation tensor R, = P®v + l ® t + n(g)n such that n = 
R,n (cf., Pietraszkiewicz, 1979). The skew-symmetric tensors 
5RrR,rand R]8R, can be associated with the respective axial 
vectors of virtual rotation 5co, and 5w, such that 

8RlRf=8<atxl, Rj8R,=8w,xl, (19a) 

8o},=Rt8v/,, (19b) 

where 1 is the metric tensor of the three-dimensional Eucli
dean space. Since 5ri = 8w, x n = Rr(5w, xn) , it follows that 
i>'8n = <5co,»! = 5w,«t. An expression analogous to 5co,»t was 
used in a number of papers, for example, by Wempner (1981), 
Sakurai et al. (1983), and Axelrad (1987) while 8\t,-t may be 
found in the recent paper of Szwabowicz (1986). Likewise, in 
the definitions of 8oi, and 5wr the symbol 8 should not be 
understood as the symbol of variation, since the symbols co, or 
w, alone have no geometric meaning. 

The variational expression i>-5n may also be transformed as 
follows: 

i>.(5ri= -n.5j>= - n - 5 f , p = (20a) 

= -(n.5f) ,P + 5gp%.Sf. (20b) 

The expression (n»5f))i; was used by Koiter (1966), Danielson 
(1970), and Zubov (1982). 

From the discussion just presented it is seen that, as far as 
their representations in terms of derivatives f,„ and f' are con
cerned, all differential 1-forms 8$„, <5co,-t, <5w,-t, - n-8v and 
- n»5f,p are equivalent to the 1-form P-8n, i.e., all 1-forms 
are defined by the same expression (10) with (16). As a result, 
neither of those 1-forms is exact or integrable as well. In all 
cases there exists no function <p such that /i?»5n = 8<p, and the 
natural bending couple generated by (5) with (9b) does not 
possess a work-conjugate geometric counterpart. In the 
language of analytic mechanics, this means that all kinematic 
constraints which are equivalent to P-<5n = 0 are 
nonholonomic constraints. As a result, all those versions of 
the nonlinear theory of thin shells, in which the natural static 
boundary conditions are constructed with the help of (5) and 
(96), can not be presented in a variational form which requires 
a functional to be stationary. In particular, it immediately 
follows from this discussion that several variational principles, 
which have been proposed in the literature for such versions of 
geometrically nonlinear first-approximation theories of elastic 
shells, must be incorrect. 

The discussion of the exactness and integrability of two 
other differential 1-forms appearing in braces in (9a) and (9c) 
is given in the Appendix. There is proved that co = n»5f,,, also 
is not integrable on X, while at the same time it is confirmed 
that co = P'8h is indeed exact on X. 

It is quite obvious that v8h is exact because v is not varied 
and, therefore, co = v8n = 8(vn) = 8nv. As a result, the 
specification of f and nv along C„ establishes those geometric 
boundary conditions which are work-conjugate to the cor
responding static ones following from (5) and (9c). Such a 
complete set of the work-conjugate boundary conditions was 
originally derived by Pietraszkiewicz and Szwabowicz (1981) 
with the help of a modified tensor of change of curvature and 
rederived by Pietraszkiewicz (1984a,b) using KaS defined by 
(lc). Within the geometrically nonlinear first-approximation 
theory of elastic shells, this led to a number of results on varia
tional principles, consistently approximated relations for 
shells undergoing restricted rotations, stability equations, and 
superposed deformations, which have been summarized by 
Szwabowicz (1982), Pietraszkiewicz (1984a), Schmidt (1985), 
and Stumpf (1986) where further references are given. 
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General Form of Boundary Conditions 

The differential 1-forms previously discussed are only ex
amples of the variety of 1-forms which may appear in the 
boundary line integral of the principle of virtual 
displacements. Each particular 1-form generates a different 
set of the natural static boundary and corner conditions on Cf. 
Indeed, each of the 1-forms enclosed in braces in (9) may be 
multiplied by a nonvanishing scalar function i)(r,„,f ')• This 
leads to a modification of the corresponding natural boundary 
condition for the bending couple resultant which essentially 
consists of a division by rj. Furthermore, an additional term of 
the type c(f,„,f')-<5f' may also be added to each of the 
1-forms. If, then, the same term is substracted from the 
1-form one obtains, upon substituting (9) into (5) and in
tegrating by parts, appropriate modifications of the cor
responding force boundary and corner conditions. Among the 
variety of the 1-forms, which may be obtained by such 
transformations, the most important are the exact, or even on
ly integrable 1-forms, since only those 1-forms generate the 
proper natural static boundary and corner conditions which 
are work-conjugate to the geometric ones. 

Let the expression (9a) be rewritten as 

5n= -vpj-1*? (d.5f,„) -tgtf (n .5 f ) , (21) 

d = f,„xf' . (22) 

The simple variational expression appearing in (21), 

e = d-6f„=Al6ii+A26t2+A3&£3, (23) 

^ l = W « - { 3 { 5 . ^ 2 = f 3 f 4 - { l f 6 . > l l = i l f S - W 4 . (24) 

may also be regarded as a differential 1-form of the type (10) 
on the six-dimensional manifold X, only in this case B = 0. It 
is easy to verify that the 1-form (23) is not integrable on X, for 
the conditions (15) are not identically satisfied when, for ex
ample, (i,j, k) = (1, 2, 4). Our aim is to transform the expres
sion (23) in such a way as to represent it in terms of an exact 
1-form. 

Suppose, for a moment, that f is prescribed along C. Then 
so is f' and, hence, the coordinates £4, £5, £6 are not varied 
but rather play the role of parameters in (23). Thus, (23) may 
now be regarded as a differential 1-form on the three-
dimensional submanifold F c X w i t h local coordinates £,, £2, 
£3. It then follows from (23) that for different /, j 6 (1, 2, 3) 
Aij j± Ajj, and the 1-form 1? is not exact on Y. There is only 
one integrability condition (15) for (i,j, k) = (1, 2, 3). Using 
(24), it is easy to verify that this condition is identically 
satisfied. Therefore, the 1-form d is integrable on Y. In order 
to find its integrating factor and its primitive on Y, we follow 
the method of integration of total differential equations (see 
Ince, 1956, Section 2.8). 

Let, for a moment, one of the coordinates £,• be constant. 
Since in the undeformed configuration A 3 = 1, £5 = 1, it is 
convenient to assume this to be £2. Then the 1-form §=AX 

(£3)^1 + ^3(?i)^?3» given on the two-dimensional sub-
manifold ZC Y with local coordinates £,, £3, is always in
tegrable on Z. Its integrating factor then is X = - £5/A{A3 

and its primitive is given by « = ln \AX/A3\ . If now ij2 is again 
allowed to vary, that is, the 1-form & is again supposed to be 
given on Y, then the functions X(£,) and «(£,), ( = 1 , 2, 3, 
previously calculated allow one to evaluate the function S (x, 
£2) = ^ 2 — K>2- I n t n e present case it vanishes, so that S = 0. 
As a result, X(£,) is the respective integrating factor and K(£,) 
is the primitive of the 1-form § on Y, such that Xi? = 8K holds. 
This can easily be confirmed by a direct analysis. Moreover, 
j3(/c) is also the primitive of d for any differentiable scalar 
function (3 so that, as a result, the general form of the 
primitive of § on Y is given by (3 (ln[ | | (A{/A3)]) = 
h(A{/A3), where h is an arbitrary differentiable function (cf., 
Zubov, 1984). 

If one follows the same procedure keeping ^ or £3 tem
porarily constant, one finds that k(A2/A3) or l(Ax/A2) are 
also primitives of d for arbitrary differentiable functions k 
and /. But from the identities (8), the fact that f is prescribed 
along C and the arbitrariness of h, it is seen that primitives k 
and / are different but equivalent forms of the primitive h. 

Now we remove the initial constraint that f is prescribed 
along C and allow it to vary again. Thus, we return to the 
1-form d given on X, according to (23) and (24). Let <p(f' ,a), 
a=At/A3 = n„/n be an arbitrary differentiable scalar-valued 
function of its arguments. The variation of a then leads to 

5 a = - y 4 3 - 2 (£ 5 d.5f , , -£ 2 d.5f ' ) , (25) 

which allows one to derive the expression for the variation of 
<p in the form 

8<p = r]d'8r,„ + C'5r' (26) 

r,= -Ai~
2H5X, c = \+A}-

2Z2Xd, (21a) 

It follows from (26) that we have, in fact, constructed the 
scalar-valued function ?/(f ,v,r') and the vector-valued function 
c(f ,„ , f ' ) which have allowed us to transform the 
nonintegrable 1-form (23) into the exact 1-form \p defined by 
the right-hand side of (26), such that \j/ = 8<p. If now (26) is 
solved for d'8i,r and the result is introduced into (21) we ob
tain 

«n = ««».„/ [ M - a " ([vj\ + (vag+ta)n].8f), (28) 

/ = - • 8 = j ^ = — (-^-. - + 2 7 J . (29) 

This is yet another expression for 5n. It differs qualitatively 
from (9a, b) and (21), since it is given directly in terms of the 
exact 1-form 8<p. 

If now (28) is substituted into the boundary integral of (5) 
and the term containing Sf' is eliminated by integration by 
parts, the integral takes the final form 

[ [(P-P*).5f + (M-M*)5¥>]*+ X) (F„-F*).5f„, (30) 
J Cf 

J n 

where the effective force resultants and the bending couple 
resultant are defined by 

P = T % + F ' , F=JM„\ + (gM„+M«)n, (31a) 

P * = T + F* ' , F* = (H.a<J)[VX + (^g + //3)n], (316) 

M=fMvv, M* = / ( H . a % ) , (31c) 

F „ = F ( s „ + 0 ) - F ( 5 „ - 0 ) , F„* = F*(5„+0)-F*(s„-0) , (3Id) 

f„=f(s„), (31e) 

M„=M*vavfi, Mrt=Af*vat0. (31/) 

From (5) and (30) it follows that the static boundary and cor
ner conditions take the form 

PCs) = P*(y), M(s) =M*(s) on Cf, (32a) 

F„ =F* at each corner M„ 6 Cf. (326) 

Furthermore, it is seen from (5) and (30) that the geometric 
boundary conditions which are work-conjugate to the static 
ones (32) are given by 

m = r*(s), <p[i'(s), a(s)] = <p*(s) on C„, (33) 

where, by definition, a(s)=a [r,v(s), r'(s)]. It also follows 
from (30) and (28) that f is kinematically admissible if 8r = 0 
and 8(p = 0 on Cu. Hence, Sn = 0 on Cu as well. 

The general forms (32) and (33) of four work-conjugate 
static and geometric boundary conditions are derived here in 
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terms of the function <p(r',a) in which a = n„/n is an in
termediate variable. The analysis clearly indicates that the 
choice of a by no means is the only possible choice of such an 
intermediate variable. Other scalar functions of i,v, f' may 
also be chosen instead of a. However, since ip is an arbitrary 
function of its arguments, this would lead to formally dif
ferent, though essentially equivalent representations of the 
boundary conditions. 

It follows from the analysis that <^(f', a) should be differen
t i a t e with respect to both arguments. The definition o f / i n 
(29) indicates also that dtp/da should not vanish identically in 
some neighborhood of the undeformed shell boundary. 
However, in order to be physically meaningful, <p has to 
satisfy a number of additional requirements based on 
mathematical and mechanical considerations. This allows one 
to arrive at a more restricted class of admissible scalar func
tions for the description of rotational deformation of the shell 
boundary. In particular, <p must vanish in the undeformed 
state, that is <p(t, 0) = 0, and upon linearization it should coin
cide with the linearized rotation of the shell boundary tpr = 
n»u,„ which is used in the classical linear theory of shells. It is 
also reasonable to require <p to be a monotonous function of 
a, at least in some neighborhood of the undeformed state. 

Some Special Cases 

We close our considerations with a brief discussion of some 
particular definitions of <p which may be used in the nonlinear 
theory of thin shells. For any choice of <p, the corresponding 
work-conjugate static boundary conditions may be derived 
directly from (32), (31), (29), and (21b). 

It follows from (2a) and (2b) that the identities (8) imply 
that 

- ^ - = - c , - 1 ( c , a + c), (34) 

n2 = [ l + a 2 + c,-2(c„a + c ) 2 ] - ' . (35) 

Therefore, ri may be expressed as the function of f' and a, 

n(i',a) = n[av — cYl (c,a + c)t + n], (36) 

where n is to be determined from (35). For an arbitrary defor
mation of the boundary the sign of n, following from (35), is 
not unique. However, it follows from (2c) and (2d) that in 
some neighborhood of the undeformed state, n must be 
positive. 

It immediately follows from (36) that «„ = vh is a par
ticular case of <p indeed. The corresponding work-conjugate 
static boundary and corner conditions were given by 
Pietraszkiewicz (1984a, b). 

Novozhilov and Shamina (1975) used the fourth geometric 
boundary parameter i?„ defined by 

d,=dr2 (n-n)-i,. (37) 

From (3a) and (36) it is seen that 

*r=n[(.c,-c—— )v + (c<x-cv)t + (cr—-—c,a)n], (38) 

and, according to (36) and (37), 
d„=ndf2 [cta + crlc,(c,a + c)]. (39) 

Therefore, #„ = #„ (f', a) is also a particular case of <p. Let us 
derive the corresponding work-conjugate static boundary 
conditions. 

Taking the variation of (37), and introducing it into the ex
pression (9a) multiplied by a , x n , we obtain after some 
transformations 

8n = n-1alp58v+{n-l.l2d„P(g>l 

+ df' i»(g)(n x n)] - df >t(g)n) .5f'. (40) 

Note that the expression (40) has the same structure as the 
general expression (28). Introducing (40) into the line integral 
of (5), we finally obtain the following definitions for the 
natural static parameters on the boundary which are work-
conjugate to the geometric parameters f and #„, 

F = (M„/ + 2a /-
27„,MJn-y«-1a r-

1MT O (2t9,t + a , - 1 n x n ) , 

(41a) 

F* = «•,-' (H'l)n-n~l (ft-i>)(2&v\-drlnxn), (416) 

M=Jn"1Mm,M*=n~ldl(H-i>). (41c) 

Thus, the set of work-conjugate boundary conditions takes 
the general form (32) and (33), except that dv [i„,(s), i'(s)] 
stands for cp in (33), and definitions (41) are used in (32). 

Finally, the rotational deformation of the shell boundary 
may also be described by the total rotation tensor R,. Noting 
(3a), (2a), and (36) it is seen that the tensor R, referred to the 
undeformed base vectors takes the form 

R, = dp' n ({[c, + cj' c(cva + c)] v 4- (ca - c„)t -

- [c„c^' (c„a + c) + c,a]n} (g)v + n~'(cvv + c,t + en)®t 

+ [uv-cfl (c„a + c)t + n](g)n). (42) 

It follows from (42) and (2a) that R, = B.,(f',a) and the 
parameter <p may be defined as some scalar function of R,, 
that is <p = <p(R,). In particular, the angle of total rotation oi, 
corresponding to R, is given by a>, = arccos ( 1 / 2 - 1/2 trR,), 
where it follows from (42) and (34) that 

trRt=n2V+d*(c,ca-c}y\. (43) 

Therefore, the angle of total rotation wt may also be chosen as 
the fourth geometric parameter of the boundary deformation. 
This choice has been found by Simmonds (1985b) to be the 
most natural one in the displacement form of nonlinear equa
tions which govern an axisymmetric deformation of shells of 
revolution. 

The work-conjugate static boundary conditions corre
sponding to the particular cases of <p discussed above, are ob
viously quite complex. More suitable particular forms of <p 
may be obtained under additional, more restrictive, 
mathematical and mechanical requirements. 

Concluding Remarks 

In this paper an entirely general approach to the derivation 
of the work-conjugate static and geometric boundary condi
tions has been developed for a class of nonlinear theories of 
thin shells. In this approach, basic theorems of the theory of 
differential forms have been applied to various variational ex
pressions which may appear in the boundary line integral of 
the principle of virtual displacements. It has been shown that 
the majority of static boundary conditions, which have been 
proposed in the literature, do not possess work-conjugate 
geometric counterparts, because the corresponding differen
tial forms are not integrable. Such static boundary conditions 
are, however, hardly acceptable in the consistent formulation 
of the nonlinear theory of shells. 

The general forms of the four geometric boundary condi
tions and of the corresponding work-conjugate static bound
ary conditions have been derived for the first time in the 
literature. They have been expressed in terms of an arbitrary 
scalar function <p of displacement derivatives which describes 
the rotational deformation of the shell boundary. Since >p is 
arbitrary, one has a wide range of possibilities to choose the 
form of boundary conditions to be used in the nonlinear 
theory of thin shells. This freedom of choice enables one to 
select <p in such a way that it best suits the particular version of 
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the shell theory or the particular shell problem at hand. As an 
example, three particular definitions of <p have been discussed. 

In the analysis it has been assumed that the deformation of 
the shell as a three-dimensional body is entirely determined by 
the stretching and bending of its reference surface. No restric
tions have, however, been imposed on the magnitudes of the 
displacements, rotations, strains and/or changes of curvatures 
of the reference surface. There is not even a need to specify the 
material behavior of the shell, since the principle (4) itself does 
not require Na® and Ma® to be derivable from a strain energy 
function. Therefore, the boundary conditions derived here are 
valid for a large class of three-dimensionally different (even 
inelastic) shell theories which have the same two-dimensional 
mathematical structure implied by the principle of virtual 
displacements (4). This generalizes considerably the results 
available in the literature for some simple versions of 
nonlinear theory of thin shells. 

For any shell theory it is necessary to specify on M and Cf 

how the fields TV"", Mals, p, h, T, H are related to the cor
responding three-dimensional external surface and body 
forces and to the deformation of the reference surface. For the 
geometrically nonlinear first-approximation theory of thin 
elastic shells such definitions have been given, for example, by 
Pietraszkiewicz and Szwabowicz (1981) and Pietraszkiewicz 
(1984b). In simple versions of the finite-strain bending theory 
of elastic rubber like shells developed by Chernykh (1980) and 
Simmonds (1985a), the corresponding definitions should also 
explicitly take into account the appropriate approximate form 
of the shell deformation in the transverse normal direction. As 
was noted by Stumpf and Makowski (1986) and Makowski 
and Stumpf (1986), the finite strain theory of elastic shells may 
have a richer mathematical structure than the one discussed 
here, if the transverse normal strains are fully accounted for. 
However, in the majority of cases it is usually sufficient to ex
press the transverse normal strains in terms of the stretching 
and bending of the reference surface. 

The work-conjugate boundary conditions derived here 
allow for a thin shell to formulate properly the nonlinear 
boundary value problem in terms of displacements as basic in
dependent field variables. Such displacement form of 
nonlinear shell equations is used most often to analyze prob
lems of flexible shells. In the case of conservative loads the 
work-conjugate boundary conditions allow to construct 
various functionals, whose stationarity conditions are 
equivalent to the proper field equations and boundary 
conditions. 
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A P P E N D I X 

Let us verify the exactness and integrability of the 1-form 
o) = n"<5f,„ appearing in (9a). In this case A = ii, B = 0 so that 
the differentiation of (2c) gives 

dA , 3B dB 

dr,„ dr,„ dr' 

— — = 2(d,j,-]yv,mn-dr>l®n, (Alb) 
or 

what implies that the conditions (14) are not satisfied and the 
1 -form ri • <5f, „ is not exact on X. I f we introduce (A 1) into (15), 
eleven conditions of (15) are identically satisfied while nine are 
not satisfied. For example, the left-hand side of (15) for (i,j, 
k) = (1, 3, 4) isy'"1 (vn)^2 what does not identically vanish. 
As a result, the 1-form n«Sf,„ is also not integrable on X. 

In the case of the 1-form vbn it follows from (9a) and (3d) 
that 

A=-d,j-1(p>P)n, B = dr,(2j~lyr,vv-vi)n. (A2) 

Differentiation of (A2) with (2) and (3) gives 
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= «?y'~2 [(»"»>)(>*(x)n + n(x)(i)-(»'.n)n(x)n], (Ala) ——- = 2d,-2j^ly„(2j-ly„v'v-vl)(.v®n + n®p) + 
3f,„ dr' 

+ al-
2(>"l-2j-lyl,lp>P)(l<g>n + n®l)- 043c) 

_ ^ _ = -2j-2yr, (v.i>)(P®ii + n®P)+J-i(»l)n®P -a ,-2( l+4/-2
75,)(y .n)n(x)n. 

df 

dB 

Since (A3a) and 043c) are symmetric and (,43ft) holds, the 
component matrix Atj is also symmetric and all the conditions 

+ r HvP)l®n + 2/-27„(i»n)n<8>n = f - ^ - ) ' (436) <14> a r e identically satisfied. Therefore, the 1-form y.fin is ex-
v 3f ,„ I act on X. 
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Non-Probabilistic Models of 
Uncertainty in the Nonlinear 
Buckling of Shells With General 
Imperfections: Theoretical 
Estimates of the Knockdown 
Factor 
A non-probabilistic, set-theoretical treatment of the buckling of shells with uncer
tain initial geometrical imperfections is presented. The minimum buckling load is 
determined as a function of the parameters which describe the (generally infinite) 
range of possible initial imperfection profiles of the shell. The central finding of this 
paper is a theoretical estimate of the knockdown factor as a function of the 
characteristics of the uncertainty in the initial imperfections. Two classes of set-
theoretical models are employed. The first class represents the range of variation of 
the most significant N Fourier coefficients by an ellipsoidal set in N-dimensional 
Euclidean space. The minimum buckling load is then explicitly evaluated in terms of 
the shape of the ellipsoid. In the second class of models, the uncertainty in the initial 
imperfection profile is expressed by an envelope of functions. The bounding func
tions of this envelope can be viewed as a radial tolerance on the shape. It is 
demonstrated that a non-probabilistic model of uncertainty in the initial imperfec
tions of shells is successful in determining the minimum attainable buckling load of 
an ensemble of shells and that such an approach is computationally feasible. 

1 Introduction 
Thin-walled shells, which are among the most utilized struc

tural elements in engineering, possess the unfortunate proper
ty of being sensitive to initial geometrical imperfections 
(Koiter, 1945; Budiansky and Hutchinson, 1979). This means 
that the buckling load may be significantly reduced due to 
deviations of the real shell from its ideal, nominal counter
part. The experimental buckling load sometimes amounts to 
no more than one-tenth of the buckling load of a perfect shell. 
Existing computer codes are able to predict the buckling load 
of a structure with specified initial imperfections. However, 
due to the very nature of the manufacturing process, it is hard 
to imagine that two identical shells are ever produced, even by 
the same manufacturing process. Consequently, it is im
perative to consider the effect on the buckling load of uncer
tainty in the imperfections of the shell. 

Engineers are accustomed to using empirical "knockdown 
factors" (NASA, 1979) in order to accommodate the large 
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discrepancy between theoretical and experimental values of 
the buckling load. The knockdown factor, when multiplied by 
the classical buckling load for the perfect structure, yields an 
estimated lower bound of the buckling load for the imperfect 
structure. Knockdown factors are often adopted as the lower 
bound of the buckling loads obtained experimentally for a 
range of distinct structures, materials, and manufacturing 
processes. Such an approach has several drawbacks. It would 
seem that the estimates should constantly be updated to in
clude new experimental results. Furthermore, this approach 
mixes shells produced by rough manufacturing procedures 
(and therefore associated with a greater reduction of the 
buckling load) with those produced by more refined tech
niques (and, hence, buckling at greater load). This implies that 
the design of shells with low initial imperfections will be overly 
conservative. 

A natural way to deal with uncertainty in the initial im
perfections is to employ a stochastic approach. Apparently the 
first probabilistic analysis of initial imperfections, treated as 
random variables with given joint distribution, was given by 
Bolotin (1958). The next step was treatment by Fraser and Bu
diansky (1969) of initial imperfections as random field with 
given mean and autocorrelation function. These approaches 
have been bridged by Elishakoff (1979, 1980) in the context of 
the Monte Carlo method. For acquaintance with pertinent 
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results one may consult the review paper by Amazigo (1976) 
and the monographs by Elishakoff (1983) and Roorda (1980). 

Probabilistic analysis treats the initial imperfections as ran
dom functions of the shape coordinates y, z of the shell. Let 
t](y, z) represent the deviation of the shell from its nominal 
shape at point y, z. If one knows an analytic relation between 
the buckling load A and the initial imperfection function 
i\ (y, z) 

A = *(ij(>>,z)) (1) 
then one can relate the probabilistic characteristics of A with 
those of i), resulting in an expression for the probability densi
ty of the buckling load. Except for the simplest cases, there is 
no analytical relation of type (1) available in the literature. 
Usually, the initial imperfection function is expanded in a 
Fourier series: 

V(y,z)= Y^Au<l>u(y,z) (2) 
ij 

where Ay are the Fourier coefficients and [<j>y] is a complete 
set of functions. Then, available computer codes (Arbocz and 
Babcock, 1974) yield relations of the type: 

A = *(L4„)). (3) 

For probabilistic methods of dealing with equation (3), with 
appropriate bibliography, one can consult Elishakoff and Ar
bocz (1985) and Elishakoff et al. (1987). 

Despite the success of stochastic analysis, one may 
recognize that uncertainty can be modeled on the basis of 
alternative, non-probabilistic conceptual frameworks. One 
such approach, based on a set-theoretic formulation, has been 
pioneered in the field of state estimation by Schweppe (1968), 
Witsenhausen (1968b), Bertekas and Rhodes (1971), and 
Schlaepfer and Schweppe (1972). Set theoretic models of 
uncertainty have also been applied in designing optimal con
trollers for linear systems by Witsenhausen (1968a), Delfour 
and Mittler (1969), Glover and Schweppe (1971, 1972), and 
Schweppe (1973). Independent of these developments, 
Drenick (1970) used set models of uncertainty in the study of 
earthquake excitation. Set models of uncertainty have been 
applied by Ben-Haim in the optimization of multihypothesis 
algorithms for malfunction isolation in linear dynamic 
systems (1986), by Ben-Haim and Elias (1987) in optimizing 
inverse measurements of two-phase flow, and by Ben-Haim 
(1985) in a wide range of material assay problems. 

The aim of the present analysis is to exploit fragmentary in
formation (which is usually all that is available) about the in
itial imperfection of thin shells, in order to determine the 
buckling loads which may be expected. Explicitly, the 
minimum buckling load will be determined as a function of 
parameters which characterize the range of possible initial im
perfection profiles of the shell. Non-probabilistic models of 
uncertainty in the initial imperfection will be employed. This 
means that an infinite set of initial profiles will be adopted on 
the basis of available data, and then the minimum of the 
buckling load on this set will be sought. A significant result of 
this analysis is a theoretical estimate of the knockdown factor. 
In addition, the knockdown factor will be expressed as a func
tion of simple manufacturing specifications. It will be seen 
that the set-theoretic approach to modeling uncertainty in the 
initial imperfections of the shell is quite flexible and allows 
one to examine imperfection sensitivity from various 
perspectives. 

The range of variation of the initial imperfection profiles 
will be modeled in several distinct ways. In Sections 2 and 3 
the uncertainty in the initial imperfection profiles will be 
quantified in terms of the variability of the Fourier coeffi
cients of those profiles. The most significant NFourier coeffi
cients are assumed to fall in an ellipsoidal set in TV-dimensional 
Euclidean space. The minimum buckling load is then 

evaluated as a function of the shape of the ellipsoid. In Section 
4, the uncertainty in the initial imperfection profile is express
ed as a uniform bound on the deviation of the surface from its 
nominal value. Thus the initial imperfection profiles are in
tegrate functions, which satisfy a uniform bound. The 
minimum buckling load will be determined as a function of 
the uniform bound on the initial imperfection. This uniform 
bound on the initial imperfections can be viewed as a shape 
tolerance, so that the buckling load is related to a manufactur
ing specification of the shell. In Section 5 the initial imperfec
tion profiles are allowed to vary within an envelope. This 
enables the designer to study the buckling sensitivity of the 
shell as a function of requiring the manufacture of the shell to 
adhere to different tolerances in different areas of the shell. 

Following Elishakoff et al. (1987), the change of the buck
ling load with the initial imperfection profile will be studied as 
a perturbation problem. Both first- and second-order varia
tions from a mean or typical initial imperfection will be con
sidered. The buckling load of the mean initial imperfection 
will be evaluated on the basis of a numerical, nonlinear buckl
ing code. 

2 Bounded Fourier Coefficients: First-Order Analysis 
Let x be a vector whose components are the N dominant 

Fourier coefficients of the initial imperfection profile of a thin 
shell. Furthermore, let V(x) represent the buckling load for a 
shell whose initial imperfection profile has x as its Fourier 
spectrum. Let x° be a nominal Fourier imperfection spectrum. 
For example, x° may correspond to the average imperfection 
spectrum. The buckling limit for an initial imperfection spec
trum x° + f, to first order in f, is: 

N D ^ (yO \ 

*u°+n =*(*")+ E / r„. (4) 
n = 1 "Xn 

We will evaluate the lower limit of the buckling load as f varies 
on an ellipsoidal set of initial imperfection spectra. For conve
nience of notation let us define: 

/d*(x°) d*(x°)\ 
V dX\ ' dxN / 

where the superscript T means matrix transposition. 
The deviation f from the nominal initial imperfection spec

trum is assumed to vary on the following ellipsoidal set: 

Z(«,w) = fc£Jf-:S«*] <6> 
where the size parameter a and the semi-axes co,, . . . , a>N are 
based on experimental data, obtainable from initial imperfec
tion data banks. Thus, Z(u,u>) represents a realistic ensemble 
of shells. The lowest buckling load which can be obtained 
from any of the shells in this ensemble is expressed formally as 
the minimum of expression (4) on the set Z: 

ix(a,w)= min [¥(x°)+0 rf] . (7) 
f€Z(a,w) 

n(a, w) is the buckling load of the "weakest" shell in the 
ensemble Z which is constructed to represent a realistic range 
of shells. It will be recognized, from the discussion in the In
troduction, that the ratio of /i to the classical buckling load 
will correspond to the empirical knockdown factor. This will 
be discussed further in Section 6. 

Equation (7) calls for finding the mimimum of the linear 
functional <f>Tl on the convex set Z(a,w). This extreme value 
will occur on the set of extreme points1 of Z, which is the col-

An extreme point of a set A is an element of A, which does not lie between 
any two other elements of A. A compact convex set is the convex hull of its ex
treme points (Balakrishnan, 1981). Also, the extrema of a linear functional on a 
convex set occur on the extreme points of the set (Kelly and Weiss, 1979). 
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Fourier Coefficient* 

°2 
a4 

b\,2 
b\,6 
b\fi 

b\,\o 
bi 3 
&2.11 

B - 1 * * 

-0.010809 
0.022578 
0.417400 

-0.077872 
- 0.263690 

0.036568 
-0.101290 

0.009732 

'Notation of equation (42) 
*'From Elishakof f e t a l . (1987) 

Table 1 

B - 2 * * 

-0.027238 
-0.007836 

0.392870 
-0.143490 
-0.009405 

0.043628 
0.034018 

-0.008685 

B - 3 * * 

-0.089906 
-0.025508 

0.741280 
0.017483 
0.112470 

-0.245610 
-0.064766 
-0.028261 

B-4** 

-0.017560 
-0.009239 

0.222900 
0.077668 
0.101510 

-0.008853 
-0.001887 

0.013545 

wn 
0.0315 
0.0174 
0.187 
0.0853 
0.152 
0.119 
0.0526 
0.0166 

dV/dXj" 

0.09668 
0.00340 

-0.01854 
-0.05687 
-0.24686 
-0.08183 
-0.01314 
-0.07173 

1.0 

0.75 

0.5 

0.25 

Fig. 1 Minimum buckling load, equation (17), as a function of the size 
of the imperfection ellipsoid, for four different sets of semi-axes 

. . , cN) in the following set: 
N „2 

lection of vectors c= (c{ 

C(«,«) = [c: E ^ - = «2]- (8) 

Thus, the minimum buckling load, equation (7), becomes: 

/ i (a ,w)= min [1r(x°) +<j>Tc]. (9) 
ceC(t»,o>) 

Define fi as an NxN diagonal matrix whose «th diagonal 
element is l / « 2 . Then, as seen from equation (8), we must 
minimize <t>Tc subject to the constraint: 

f(c)=cTQc-a2 = 0 (10) 

We will proceed by the method of Lagrange multipliers 
(Bryson and Ho, 1975). Define the Hamiltonian as: 

H(c)=<t>Tc + yf(c) (11) 

where 7 is a constant multiplier whose value must be deter
mined, and <j> is defined in equation (5). For an extremum, we 
require that the derivative of the Hamiltonian vanish: 

0 = = <j> + 2ync 
dc 

(12) 

which implies: 

27 
$}-'<£. (13) 

Substituting this into the constraint, equation (10) yields the 
following expression for the multiplier: 

1 <t>TQ~^ (14) 72 = 4a2 

from which we find that the extremal values of the vector c 
are: 

c= ± - fi-'</>. (15) 

We now find that the minimum buckling load, given in equa
tion (9), becomes: 

IA(a,u)=*(x°)~a-JVsFr<l>. (16) 

It is significant that this analysis yields an explicit relation
ship between the minimum buckling load and the 
characteristics of the initial imperfections, as represented in 
the parameters a and co1 o>N. Since fi is a diagonal 
matrix, equation (16) can be written explicitly as: 

/ 4 a , c o ) = * ( x ° ) - a ( I ] («„ ^ ') ) . (17) 

From this relation one recognizes that significant reduction in 
the buckling load results from large sensitivity of the nominal 
buckling load to Fourier ceofficients, whose semi-axes in the 
imperfection ellipsoid are large. Furthermore, one notices that 
the mimimum buckling load depends linearly on the overall 
size, a, of the imperfection ellipsoid, and nonlinearly on its 
shape, <d], . . . , oiN and on the partial derivatives 
dtr(x°)/dxn. 

Let us consider the numerical evaluation of equation (17), 
based on partial derivatives of * with respect to eight signifi
cant Fourier coefficients (from Eliskhakoff et al. 1987). The 
buckling load with the nominal imperfection profile is 0.746 
(in units of the classical buckling load), for the shells in ques
tion. The diagonal elements of the matrix 0 are chosen as the 
mean squared deviations from the average of the corre
sponding Fourier coefficients of the four B-shells studied by 
Elishakoff et al. (1987). These measured values of the Fourier 
coefficients for these four shells, the values of o>{ o>s 

and the derivatives of ¥ are presented here in Table 1. 
The linear variation of the minimum buckling load with the 

size parameter a is shown in Fig. 1. The four lines are based on 
different choices of the semi-axes of the imperfection ellip
soid. The curve labeled "experimental" employs the empirical 
values of oi1, . . . , w8 in Table 1; for the other three curves the 
imperfection sets are spheroids whose radii equal the 
minimum, the maximum, and the average of the semi-axes in 
Table 1. Equation (17) indicates that the mimimum buckling 
load is sensitive to the size and shape of the imperfection ellip-
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Fig. 2 Minimum buckling load as a function of the shape of the im
perfection ellipsoid, for three values of a 

soid. To demonstrate this we evaluate y, as the imperfection 
ellipsoid varies from the ellipsoid of Table 1 to a spheroid of 
equal volume. The radius of the equivalent spheroid is 
0)̂  = 0.0585. The semi-axes vary parametrically with a control 
parameter p as pwn + (1 -p)ois for n=\ 8. The 
minimum buckling load, ji, is displayed in Fig. 2 versus the 
parameter p, for three values of the ellipsoid size, a. 

Equation (17) indicates that the minimum buckling load is 
sensitive to the values of the derivatives of * as well as to the 
size and shape of the imperfection ellipsoid. In Fig. 3 we 
evaluate n as the imperfection ellipsoid varies from the ellip
soid of Table 1 to a spheroid of equal volume, and as the 
derivative of ¥ vary from the values in Table 1 to the average 
of those derivatives. The radius of the equivalent spheroid is 
0.0585 as before, and the average of the eight derivatives of * 
listed in Table 1 is d= -0.04861. The semi-axes vary 
parametrically with the parameter p as in Fig. 2, while_ the 
derivatives vary parametrically as p(d^!/dxn) + (1 -p)d for 
n = 1, . . . , 8. The minimum buckling load, /x, is displayed in 
Fig. 3 versus the parameter p, for three values of the ellipsoid 
size, a. 

It should be noted that, although equations (16) and (17) are 
written in closed form, ^(x0) as well as d^(x°)/dxn must be 
determined numerically from existing nonlinear computer 
codes. Thus, the latest numerical sophistications can be direct
ly incorporated in this analysis. 

3 Bounded Fourier Coefficients: Second-Order 
Analysis 

In the previous section a first-order expansion of the 
nonlinear buckling load was studied. In this section a second-
order expansion is considered. Let Z(a,o)) and </> be defined as 
in Section 2, and define the NxN matrix 3 whose elements 
are: 

smn 
d2*(X°) 

dxmdx„ 
(18) 

Let x° be a nominal initial imperfection spectrum. The 
buckling limit for an initial imperfection x° + f, to second 
order in f, is: 

¥ ( ^ + r ) = ¥ ( x o ) + 0 r f + — f r H f . (19) 

Fig. 3 Minimum buckling load as a function of the shape of the im
perfection ellipsoid and of the derivatives of ¥, for three values of a 

As before, we are interested in the minimum buckling load on 
the ensemble Z of shells. This minimum may be expressed for
mally as: 

/ ! (« ,«)= min r * ( j e ° ) + ^ f + {.rgj.1 ( 2 0) 
f€Z(a,o>) L 2 J 

This is a nonlinear optimization problem with an inequality 
constraint. Define fi as in Section 2. The inequality constraint 
on the deviations f from the nominal initial imperfection pro
file, embodied in the set Z{a,u>), becomes: 

/(f)^rrnr-a2<o. (21) 

Again, the method of Lagrange multipliers will be adopted 
to solve this problem. Under the new circumstances the 
Hamiltonian will be defined as: 

tf(J-)=*(*» + r ) + 7 / ( f ) . C22) 

Necessary conditions for a minimum of * are that the 
derivative of the Hamiltonian vanish: 

dH 
0 = -

ar 
- = 0 + Ef+27«f. (23) 

and that the constraint be satisfied: 

f O f S o 2 . (24) 

Because the constraint is an inequality, the Lagrange 
multiplier must satisfy one of the following relations: 

7 > 0 if ZTil{=a2 (25) 

7 = 0 if £TSl{<a2. (26) 

Equation (23) implies that: 

f= - [3+ 27iJ]-»</>. (27) 

We must now consider the determination of 7, whose value 
depends on whether the minimizing value of f occurs on the 
boundary of Z(a,o)) (equation (25)) or in the interior (equa
tion (26)). From equations (26) and (27) we see that the 
minimum occurs for a value of fin the interior of Z(a,co) and, 
thus, 7 = 0 if the following inequality holds: 

( / ^ S - ' f l S - ' ^ X a 2 (28) 

If this relation holds, then the minimum buckling load is ob
tained from equation (20) as: 
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Ii(a,u)=*(x°)——<t>T3~]<l>. (29) 

On the other hand, if relation (28) is not satisfied, then the 
minimum occurs for a value of f on the boundary of Z(a,o>), 
and 7 > 0 . In order to find the value of 7, note that equation 
(25) requires the following equality to hold: 

a2 = frOf (30) 

which, together with equation (27), determines 7. Then, 
substituting equation (27) into equation (20), one finds the 
minimum buckling load to be: 

n(a,w)=^r(x0)-<j)T[S + 2yil]-l4> 

+ —<j,T[S + 2ya]-,'S[Z + 2yQ]-[<f>. (31) 

As in the previous section, a closed-form expression is ob
tained for the minimum buckling load. Note that if S = 0, then 
this relation reduces to the first-order expression, equation 
(16). However, when the second-order variation of the buckl
ing with the Fourier coefficients is known, equation (31) 
enables a more realistic assessment of the minimum buckling 
than is provided by equation (16). 

It should be stressed that the first and second derivatives in 
equations (4) and (19) may strongly depend on the magnitude 
of x°. Moreover, the validity of a truncated Taylor series ap
proximation appears to us as a challenge both to the numerical 
analysts and to the experimentalists. 

4 Uniform Bound on the Imperfection Profiles 

In the previous sections we have represented the initial im
perfection profile and its variations exclusively in terms of 
Fourier coefficients. It appears interesting to define the varia
tions of the imperfections in terms of a radial tolerance on the 
shape of the shell. In this section this tolerance is uniform over 
the shell, while in the next section the tolerance varies from 
point to point on the shell. 

Let us consider a perfect right, circular cylindrical shell of 
length L and circumference 2irR. A point on the surface is 
specified by the coordinates y, z where y is the length from one 
end of the cylinder and z is the distance around the shell from 
a reference position. Let % = iry/L and d-z/R be normalized 
positional coordinates. Let ?/(£,0) be the deviation of a real 
shell from the perfect cylinder at point (£,0). Let ij0 (£,0) be the 
nominal imperfection profile; it can be chosen as any typical 
(e.g., average) initial imperfection profile. Let x° be the 
significant Fourier coefficients of the nominal spectrum ij0. 

In these new circumstances, the allowed variations around 
y\0 are the elements of the following set of functions: 

H(r)) = [V:\r,(Z,6)\<rj} (32) 

Thus, the deviations from the nominal initial imperfection 
profile are uniformly bounded by the maximum deviation rj. 
In other words, H(i}) represents an ensemble of shells for 
which i) is the (uniform) tolerance in the radial dimension of 
the shell. 

For any initial imperfection profile r;o(£,0) +i7(£,0), the 
corresponding vector of significant Fourier coefficients is 
denoted x(ri0+ri). Let X(fj) represent the collection of all 
Fourier vectors corresponding to shells in the ensemble H(i)): 

X(r)) = [x:x = x(rl) for 7j€H(r})). (33) 

Also let us define the transposed vector <j>T = d^e(x°)/dx. 
With these definitions we can express the nonlinear buckling 

load for the first-order deviations from the nominal initial im
perfection profiles as: 

*(x°+x(rl))=-i'(x°) + <t>T[x(Vo+->l)-x(r1o)]- (34) 

The Fourier coefficients are linear homogeneous functions of 
the imperfection profile. This means that: 

X(r,o + v)-x(Vo)=x(r,). (35) 

Consequently, equation (34) becomes: 

*(x°+x(rl))=V(x0)+<i>Tx(r)). (36) 

Now we can determine the lowest buckling load obtainable 
for any uniformly-bounded deviation ij(£,0) from the initial 
nominal imperfection profile r?0: 

H(rj)= min [¥(x°) +4>Tx(-q)\ (37) 
xWfXW 

= ¥ (x° ) + min <j>Tx{t)) (38) 
>>eH(i)) 

H (r)) is the lowest buckling load of any shell in the ensemble of 
shells defined by the set H(rj). Equation (38) calls for the 
minimum of the linear functional 4>TX(T}) on the convex set 
H(ij). This extremum can be sought on the set T(fj) of 
extreme-point functions2 of H(»)). Thus: 

li(r))=-*(x°)+ min 4>Tx(ri). (39) 

Let D represent the domain of the surface of the cylinder: 

Z>=[(£,0):O<£<7r, O < 0 < 2 T T ) . (40) 

The set of extreme-point functions is: 

T(rj) = [r,:r,a,e)=f1iKP^,e)-KQa,d)], 

PDQ = 0,PUQ=D} (41) 

where Kv(i-,8) is a characteristic function, defined as 
follows: For any set V of points on the surface of the shell, 
Kvd,B)=\ if the point (f,0) belongs to the set V, and equals 
zero otherwise. Thus, T(rj) is the set of all functions which 
switch arbitrarily back and forth between + r) and - r). 

We will now proceed to evaluate the minimum in equation 
(39). Before doing so we need to evaluate the Fourier coeffi
cients of an arbitrary element of T(r)). We can approximate 
the initial imperfection function in a truncated two-
dimensional Fourier series as follows: 

N{ N2 N3 

f(£>0)= S « / cos/£ + ^ £} [£/«rsuv£ coske 

;' = 0 j=l k=l 

+ cJksmjtsink6]. (42) 

The coefficients in this expansion are evaluated as: 

(1 +ol0)ir
i Jo Jo 

(43) 

t>jk(v)=-^-\ T \\(i,6) sinjZ coskOdtdd j,k>0 (44) 
TT JO JO 

cJkW=—r\ * \\tt,6) sinjl; sinkOdUde j,k>0 (45) 
r Jo Jo 

where 5,0 is the Kronecker delta function. 
To develop an explicit expression for the minimum buckling 

load, let us adopt the following nomenclature for the elements 
of the vector </>: 

Since H(^) is a compact convex set, it is the convex hull of its extreme 
points. These extreme points are themselves functions, like the elements of 
H(«). 
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8V (x°) 
Pj^—^-1, M > 0 (47) 

yJk= , ' , . / ,*>o. (48) 

Expanding the inner product 0 rx(rj) which appears in 
equation (36), explicitly in terms of the quantities ah 0jk, yjk, 
fl,(r)), bjk(t}) and cjk(ri), one obtains the following expression 
for the buckling load, to first order in the imperfection 
profile: 

" l 

* ( X 0 + X ( T J ) ) = * ( X 0 ) + ^«,f l , ( r j ) 

l' = 0 

N2 N3 

+ E LtfjkbjtW+yjtCjth)]. (49) 
y = l * = 1 

Let us define the following function: 

S(Z,B)=—r E , , t a,cosig 
T , = 0 1 + o i0 

+ - T E s i n ^ E t ^ cosW?+yjk s i n ^ l • (5°) 
^ y = l J t = 1 

Combining equations (43)-(45) with equation (49) one finds 
that the buckling load for an initial imperfection spectrum ij is 
given by: 

r,tt,e)su,e)dZde. (5i) 
o Jo 

We now wish to determine the lowest value of this buckling 
load for the ensemble H(ij) of shells. Thus, we seek the 
minimum of ^!{x° + x(r\)) as ij varies on H(ij). As we men
tioned in connection with equation (38), this minimization 
may be sought as TJ varies on the set !T(i}) of extreme-point 
functions. Examination of equation (41) shows that each 
extreme-point function ?7(£,0) switches between +?) and — ij 
as (£,0) moves over the domain D. Thus, equation (51) is 
minimized by choosing 77= +ij for those values of (£,0) for 
which S(£,0) is negative, and by choosing TJ= — ij for those 
values of (£,0) for which S(£,0) is positive. Equivalently, the 
minimum buckling load is obtained from that function 
7)(£,0)67'(ij) whose sign is always the opposite of the sign of 
<S(£,0). Thus, for the minimum buckling load we arrive at: 

; u ( r j )=*(x 0 ) - r ) [ 2 X V \S(£,e)\diide. (52) 
Jo Jo 

As anticipated, this formula indicates that the minimum 
buckling load of the ensemble of shells with uncertain but 
uniformly-bounded imperfections is lower than for the 
nominal shell. The decrease of the buckling load can be readily 
estimated by equation (52). Using data from Elishakoff et al. 
(1987) one finds the integral equal to 0.4555. Thus, the 
minimum buckling load for an ensemble whose imperfections 
are uniformly bounded by ij is jt = 0.746-0.4555ij. For exam
ple, ix = 0.70045 for ij = 0.1. That is, if the uniform bound on 
the initial imperfections constitutes one-tenth thickness, then 
the buckling load of the weakest shell in the ensemble is 70 
percent of the classical buckling load. These numerical results 
should be viewed with caution, as they are based on an in
complete set of partial derivatives of the * function. 
Derivatives of ¥ , with respect to additional imperfection 
modes, may significantly alter the numerical value of the 
minimum buckling load. The calculations presented here 
demonstrate the feasibility of this analysis. 

5 Envelope Bound on the Imperfection Profiles 

The derivation of equation (51) depends on the convexity of 
the set of initial imperfection functions, and on the Taylor ex
pansion in equation (36) being to first order, but not on the 
specific structure of the initial imperfection set. We are thus 
free to employ equation (51) for a first-order analysis when the 
function -q (£,0) is an extreme-point function of any convex set 
of initial imperfection functions. A useful generalization of 
the uniform bound model of initial imperfections is to con
sider imperfection profiles which are contained in an 
envelope. Let us consider the following set of initial imperfec
tion functions: 

H(ij„ijH) = {ij:i, ;(f,fl)Si,(£,fl)s,H(€ I0)). (53) 

The set H ( ^ , J J „ ) represents an ensemble of shells for which 
the radial tolerance varies over the surface of the shell; t\l (£,0) 
is the lower envelope function and ?j„(£,0) is the upper 
envelope function. The extreme-point functions of H(ij/,ij1() 
are the functions belonging to the set: 

nr,„r,u) = [ij: f,(U) =VuOt,0)KP(H,d) 

+ r,,(ii,e)KQ(!i,e),PnQ = <d,PUQ=D} (54) 

where D is defined in equation (40). The value of a function in 
T{i\i,i\u) switches between ij,(£,0) and rj„(£,0) as (£,0) moves 
over the domain D. The minimum buckling load is obtained 
for that function which takes the lower value, i?/(£,0), when 
S(£,0) is positive and takes the upper value, t)„(£,0), when 
S(£,0) is negative. To conveniently formulate the minimum 
buckling load, let us define the following two subsets of D: 

A+ = [(£,0):S(£,0)>O} (55) 

A_ = ((£,0):S(£,0)<O). (56) 

The lowest buckling load, to first order in the imperfection 
profile, obtainable from any initial imperfection profile 
bounded within the envelope defined in equation (53) is: 

Al(1,„r,u)=*(xo) + j A Vu(i,e)S($,e)d$de 

+ \ yi,(i,e)S{i,e)dkde. (57) 

This relation has several practical implications. First of all, 
one realizes that the upper bound, j]u, on the ensemble of in
itial imperfection profiles influences the value of the minimum 
buckling load only in the domain A^. That is, -qu can assume 
any values whatsoever3 in A+ without altering the buckling 
load of the weakest shell in the ensemble H (J)/,?J„). Similarly, 
the lower bound, TJ,, effects the buckling load only at points in 
A + , and can be freely chosen4 in A_. 

Following this line of thought, it is convenient to 
characterize the ensemble H(u„i)u) of shells with a single 
tolerance function, r(£,0), rather than with two envelope 
functions 17, and r)u. Let T (£ ,0 ) be the function: 

fij,(€,0) for (£,0)€A+ 

r ( £ , 0 ) H (58) 
U„(£,0) for tt,0)6A_. 

Let H ' (T) be the set of initial imperfection profiles, ij, which 
satisfy: 

T ; ( £ , 0 ) > T ( £ , 0 ) for (£,0)<EA+ (59) 

> 7 ( £ , 0 ) < T ( £ , 0 ) for («,0)€A_. (60) 

3 Subject to two important restrictions: That i)u > ij/ throughout D, and that 
the magnitude of rju not become so large as to invalidate the use of a first-order 
expansion of *(jr°). 

Subject to the same two constraints, applied to TJJ. 
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Fig. 4 Axial variation of the local sensitivity to imperfection, for three 
different azimuthal angles 

The sets H(i),,T)u) and H ' (r) are not identical. However, the 
buckling loads of the weakest shell in each of these ensembles 
are the same. In other words, r (and equations (59) and (60)) is 
equivalent to -q, and -qu (and equation (53)) as far as the 
minimum buckling load is concerned. 

The tolerance function is defined in terms of the sign of 
S(ij,0).The magnitude of S also carries a physical significance, 
and can be thought of as a measure of the sensitivity to im
perfection in the infinitestimal portion d%dd of the shell at 
point £,0. The magnitude of S at each point on the surface of 
the shell serves to weight the local contribution to the buckling 
load of an initial imperfection at that point. As indicated by 
equations (51) and (57), if the magnitude of S is small over a 
region of the surface, then the initial imperfections in that 
region can be comparatively large without excessively enlarg
ing the buckling load. Conversely, the buckling load is very 
sensitive to imperfections in those regions of the shell for 
which 151 is large. The axial variation of S is demonstrated in 
Fig. 4, based on data from Elishakoff et al. (1987). This figure 
illustrates that the contribution to imperfection sensitivity of 
the top and bottom portions of the shell is invariably near 
zero, while around the midplane the sensitivity achieves its 
maximum values. Figures such as this provide useful insight to 
the spatially varying sensitivity of the shell to initial 
imperfections. 

A tolerance function defines an ensemble of shells, as in 
equations (59) and (60). Suppose that one wishes to construct 
a radial tolerance function for which the minimum buckling 
load on the corresponding ensemble assumes the value M. 
That is, one wishes to choose T SO that: 

M=*(x°)+ [ * VT{Z,6)S(£,d)dZde. (61) 
Jo Jo 

Furthermore, suppose one desires the tolerance in each region 
to be as large as possible, consistent with equation (61). One 
way to do this is to choose the tolerance so that the local con
tribution to the minimum buckling load is uniform over the 
surface of the shell. This requires that: 

r(£,0)S(£,0) = constant. (62) 

Combining these two equations yields the following expres
sion for the desired radial tolerance function: 

M-*(x°) 
r ( W , = i s iwT- (63) 

Note that the sign of r is always the opposite of the sign of S, 
because the nominal buckling load, ¥ {x°), exceeds the ensem
ble minimum M. This is consistent with the use of equation 
(63) as a tolerance function, as defined in equations (59) and 
(60). 

To summarize, envelope-bound models allow one to study 
the effect (on the minimum buckling load) of relaxing the 
radial tolerance selectivity in different areas of the shell. The 
function S(t;,9) enables one to assess the contribution to im
perfection sensitivity of various portions of the shell, and 
makes it possible to design a spatially-varying tolerance func
tion accordingly. 

6 Theoretical Estimates of the Knockdown Factor 

The knockdown factor K is an engineering parameter whose 
product with the classical buckling load, Pch yields a lower 
bound for the buckling load of the structure. The knockdown 
factor can be viewed as a property of an ensemble of shells, 
and the lower bound is the buckling load of the weakest shell 
in the ensemble. In the previous sections we have obtained ex
plicit expressions for the minimum buckling load ix of an 
ensemble of shells. The ratio \ilPcl provides an estimate of the 
knockdown factor. This estimate can be evaluated for each of 
the models which has been discussed, thereby relating the 
knockdown factor to different characterizations of the uncer
tainty in the initial imperfections. 

It will be noted that (i depends on the choice of a nominal, 
initial imperfection spectrum, x°. If the initial imperfection 
spectra of the ensemble tend to cluster around an average 
spectrum, x, then a reasonable estimate of the knockdown 
factor would be: 

A noteworthy characteristic of this relation is that it enables 
estimation of the knockdown factor based on limited em
pirical knowledge of the ensemble at hand: the mean im
perfection of the ensemble and the tolerance to which the 
ensemble was produced. 

7 Conclusions 

In this study we considered the buckling of shells with 
general, geometrical imperfections. Instead of assuming ex
tensive knowledge of the probabilistic characteristics of the in
itial imperfections, we adopted a non-probabilistic, set-
theoretical approach to modeling uncertainty in the initial im
perfections. In particular, we assumed that the initial im
perfections are uncertain but bounded. Three different set-
models of uncertainty were studied. The set Z(a,«) (equation 
(6)) represents an ensemble of shells whose Fourier coeffi
cients are contained in an ellipsoid. The set H(f)) (equation 
(32)) defines an ensemble for which r) is a uniform bound on 
the tolerance in the radial dimension of the shell. Finally, 
H(*)/,?/„) (equation (53)) represents an ensemble of shells 
whose manufacture is subject to a radial tolerance which 
varies over the surface of the shell. For each of these 
ensembles we have obtained an explicit expression for the 
buckling load of the weakest shell in the ensemble, and we 
have related this to the knockdown factor. We have shown 
that the function S(£,0) can be used to define a spatially-
varying radial tolerance. Finally, we have demonstrated that 
numerical results from sophisticated, nonlinear buckling 
codes can be readily incorporated in the evaluation of these 
quantities. 
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Transient Thermal Stresses in 
Cylindrical^ Orthotopic Composite 
Tubes 
A solution is given for the stresses and displacements in an orthotropic, hollow cir
cular cylinder, due to an imposed constant temperature on the one surface and heat 
convection into a medium of a different constant temperature at the other surface. 
Temperature-independent material properties are assumed and a displacement ap
proach is used. Results for the variation of stresses with time and through the 
thickness are presented. 

Introduction 
An understanding of thermally-induced stresses in 

anisotropic bodies is essential for a comprehensive study of 
their response due to an exposure to a temperature field, 
which may in turn occur in service or during the manufactur
ing stages. For example, during the curing stages of filament 
wound bodies, thermal stresses may be induced from the heat 
buildup and cooling process. The level of these stresses may 
well exceed the ultimate strength. 

Composite tubes, which can be produced by filament 
winding on a cylindrical mandrel, have useful applications in 
such parts as automotive suspension components, landing 
gears, and launch tubes. Considerable work has been done on 
the stress field due to mechanical loading (e.g., Lehknitskii, 
1963; Sherrer, 1967; Pagano, 1972). Less literature is devoted 
to studies of thermally-induced stresses. To this extent, for
mulations and solutions for the thermal stresses in orthotropic 
cylinders have been presented, for example, by Kalam and 
Tauchert (1978) due to a steady-state plane temperature 
distribution, and Hyer and Cooper (1986) due to a steady-state 
circumferential temperature gradient. The plane thermal-
stress problem of a thin circular disc of orthotropic material 
was considered by Parida and Das (1972). Thermal effects on 
the microstructure level were analyzed by Avery and 
Herakovich (1986), by considering an orthotropic fiber in an 
isotropic matrix under a uniform temperature change. 

In this work the problem of transient (time-dependent) ther
mal stresses in a hollow orthotropic circular cylinder is 
treated. It is assumed that one surface of the cylinder is at a 
constant temperature T0, and at the other there is heat convec
tion into a medium at the reference temperature. The insight 
provided by this analysis may prove helpful in such instances 
as choosing curing cycle conditions. The material properties 

1 Currently at the School of Aerospace Engineering, Georgia Institute of 
Technology, Atlanta, GA 30332-0150. 
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are assumed temperature-independent and a displacement ap
proach is used. It is also assumed that the stresses act on the 
planes normal to the cylinder axis and do not vary along the 
generator and that there are no body forces. Numerical results 
are presented for the variation of the stresses and 
displacements with time and through the thickness. 

Mathematical Formulation 
Consider a hollow cylinder of inner and outer radius rl and 

r2, respectively. We denote by r the radial, 6 the circumferen
tial, and z the axial coordinate (Fig. 1). The cylinder is as
sumed to have zero initial temperature. For t>0, the boun
dary r = rx is kept at temperature T0 and at r = r2 there is con
vection into a medium at the reference (zero) temperature. 
Although the reference temperature is taken as zero, the 
analysis would be valid for any nonzero value (this is discussed 
further in the results section). 

The thermal problem consists of the heat conduction 
equation 

* ( 
d2T(r,t) 1 dT(r,t)\ dT(r,t) 

dr2 dr dt 
(ri<r<r2,t>0), 

and the initial and boundary conditions 

T(r,t = 0) = 0 at rx<r<r2, 

dT(r,t) 
dr 

T(rut) = T0(t>0), 

+ hT(r2,t) = 0(t>0), 

(la) 

(lb) 

(lc) 

(Id) 

where K is the thermal diffusivity of the composite in the r 
direction, and h is the ratio of the convective heat-transfer 
coefficient of the composite tube and the surrounding 
medium, and the thermal conductivity of the composite in the 
r direction. The temperature distribution T(r,t) can be found 
in Carslaw and Jaeger (1959) in terms of the Bessel functions 
of the first and second kind /„ and Y„ (note that as the range r 
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^ B - X 

+ h T = O 

Fig. 1 Definition of the geometry 

does not extend to the origin, Bessel functions of the second 
kind are not excluded, as opposed to the solid cylinder case). It 
is given in the form 

T(r,t) = di+d2ln(r/r2) 

+ X) e ""' [rf4„ Jo (ra„ )+ds„ Y0 (ra„) ], 
« = i 

(2) 

where ± a„ are the roots (all real and simple) of: 

[xYx(r2x) - hYQ(r2x)}J0(rxx) - [xJx(r2x) - hJ0(r2x)] Y0(rtx) = 0. 

(3) 

The constants d, are given in Appendix I. Since there is only 
radial dependence of the temperature field, the hoop 
displacements are zero and the stresses and strains are in
dependent of 8. Therefore, for the orthotropic body, the ther-
moelastic stress-strain relations are 

Tiz 
Trz 

(4) 

where Ctj are the elastic constants and a,- the thermal expan
sion coefficients (we have used the notation \=r, 2 = 6, 3 = z). 

Since the temperature does not depend on the axial coor
dinate, we can assume that the stresses are independent of z. 
In addition to the constitutive equations (4), the elastic 
response of the cylinder must satisfy the equilibrium 
equations: 

c„ 
c]7 C'n 
0 
0 
0 

cv c22 C2T, 
0 
0 
0 

c„ 
C23 
C33 
0 
0 
0 

0 
0 
0 

C44 

0 
0 

0 
0 
0 
0 

c„ 0 

0 
0 
0 
0 
0 

t«J 

err-arAT 
tm-oie^T 
ezz-azAT 

Tte 
7« 

L TVe 

°rr,r+ (arr ~ °M ) lr = 0 , 

Tro,r + ^rg/r = 0; r~' (nrz) ,t = 0. 

(5a) 

(5b) 

For the problem without the thermal effects the expressions 
for the displacement field were derived by Lehknitskii (1963). 
A similar procedure was followed and lead to the general solu
tion for the displacements in this thermoelastic problem (see 
also Hyer and Cooper, 1986). Due to the symmetry of the 
problem, only rigid body translation and rotation contribute 
to the 6 component of the displacement field and the strains 
and stresses do not depend on 6. Furthermore, there are no 
twisting strains. Therefore, the displacements have the form: 

ur = U(r,f) + z(wycosd - o)xsmd) + v0xcos6 + v0ysmd, (6a) 

ue = — z(coxrcosd + wyrsind) — yOxsin0+ t»Oj,cos0 + cozr, (6b) 

uz=zC(t)+ uxrs\r\Q - o>yrcosd + v0z. (6c) 

In the above expressions, the function U(r,f) represents the 
radial displacements accompanied by deformation, and the 
constants v0x, v0y, v0z, o>x, o>y, coz characterize the rigid body 
translation and rotation about the cartesian coordinate 
system. The parameter C is time-dependent and is found from 
the boundary conditions, as discussed later. 

The strains are now expressed in terms of the displacement 
U: 

U(r,t) _ 3 t / ( r , Q -

dr 
-•^,, = c(t). 

7e<:=7,-<:=7rt)=0 

da) 

(lb) 

Substituting (4) and (7) into (5a) yields the following differen
tial equation for the displacement field U(r,t): 

'd2U(r,t) 1 dU(r,t) 

dr2 r 

dT(r,t) 
= Qi dr + Q2 

) -dr 

T(r,t) 

^fU(r,t) 

+ (c23-cny 
C(t) 

where 

ql=Cnar + Cnae + Cnaz, 

Qi = (Cji - Cl2)ar + (C12 - C22)oie + (C,3 - C2i)az 

The parameter C(t) is now written in the form 
00 2 

C(t)=c0+^c„e-Ka"'. 

To solve equation (8), set 

U(r,t)=U0(r)+ J^e~K"Z'Rn(r). 

(8) 

(9a) 

(9b) 

(10) 

(11) 

Substituting (2), (10), and (11) in (8) gives the following equa
tions for U0 and R„: 

Cn(u0''(r)+-^-)--^U0(r) 

<7î 2 + g2^i+(C23-Ci3)co , , ln(r/r2) 

'11 y*n" ( r) + 

r 

R„'(r) 

(12) 

)-¥"• (r) 

(C23 - Cn)cn ' Jo(ra„) 
r + d*» [ " 7 " ' -Q\<xnJ\(ra„) 

+ d<, 
Y0(ra„) (ra„) "I 

Qia„Yi(ra„)^ n = l , . . . , c 
(14) 
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The solution to these equations is the sum of the solution of In the (unlikely) event that for a certain k, Cn(2k+ 3)2 = C22, 
the homogeneous equation and a particular solution. The the term in the sum for this k is replaced by the one in Appen-
solution of the.homogeneous equation (8) is dix III. 

. . For C n = C22 the solution of (14) for R„ is 
Ug(r,t) = Gl(t)r

i+G2(t)r
2; \2= ± V C 2 2 / C , " , . (15a) G c _ c 

Rn{r)=Glnr + -^- + 2l ncnr\n(r/r2) + R*(r), (19«) 
In a similar fashion to the parameter C(t), set Gt(t) in the r 2 C n 
form: 

Gi(t)=Gi0+J^Gi„e~Ka"'; j = l , 2 . (156) 
R* (r) =B0„rln(ra„/2) + -^rlnHran/2) 

2irCu 

Since the constants c, and Gv are yet unknown, we shall in- + 1J B ^ r + ln(ran/2) + B2nkr + > (i9b) 
dicate the places where they enter in the expressions tha t _ 0 

follow (these constants are found later from the boundary w n e r e 

condi t ions) . For C u J±C22 the solut ion of (12) for U0(r) is _ 7TG?4„ + ds„ (2<y, + 2 7 - 1) 

C -C " 
0 ' ° r + 2°r Cn-C22

 C°r ° " It should be noted that although the sum over the roots a„ is 
extended from n = 1 to 00, only the first few terms are domi-

U* (r) ffz 1 r\„(r/r \ n a n t a n d it usually suffices to include a small number of roots. 
UoK"~Cn-C22

U2'm(,/'2' This issue is discussed in detail in the Results section. 
Next, turn to the boundary conditions. We assume that no 

[" Q\d2+q2d\ 2Cnq2d2 1 external tractions exist. Then the conditions on the contour 
L Cn - C22 ( C n - C22)

2 J ' bounding the cross-section (at r = r, and r = r2) can be written 

in the following form: 

For C „ = C 2 2 the corresponding solution of (12) is <7„(i-„/) = rr t(r |.,/) = r„ ( r„ / ) = 0, *=1,2. (20) 

U0(r)= Gwr + —— + —c0r\n(r/r2) + UX (r), (17a) Only the condi t ion for the stress arr is no t satisfied identically 

r 2<-"ii and it is written in terms of the displacement field: 

UX(/•) =-^-d2r\tf(r/r2) + (2<?1 ~ 9 ^ 2 + 2Qldi rln(r/r2). C„ £/, (ri,t) + Cl2-^^-+C13C(t)-qlT(rht) = 0; /= 1,2. 

(176) ( 2 1 ) 

To solve (14), we use the series expansions of the Bessel func- By •substituting (2), (10), and (11) in (21) and the expressions 
tions to obtain a series expansion of the right-hand side (see <.17> f o r ^ (r), gives, in turn, the following two linear equa-
Appendix II). In the following, 7 stands for the Euler's con- t l 0 n s l n Gio> G2o> co: 
stant (-0.577215. ) ( C l l x , + Cl2)^~l G10 + (CUX2 + C , ^ 1 G 2 0 + / l 0 c 0 

For Cn ^ C 2 2 , the solution of (14) for R„, n = 1, . . . 0°, is 
x x, C 2 3 - C 1 3 / 1 0 x = - C 1 1 C / 0 * ' ( / - / ) - C 1 2 - t ^ ^ - + gi[rf1+rf2ln(/-///-2)] /=1,2, 

i ; ; , ( r ) = G 1 , / 1 + G 2 , / 2 + 23 1 3 c„r + ^ ( / - ) , (18a) 
C u - C 2 2 (22a) 

2 c?5„ , , ,„ where 
* ; ( # • ) ^ B 0 H r + — - 5" rln( re„/2) 

0 = T̂  7^ (G23 _ G 1 3 ) + C ' 1 3 f ° r Cl 1 5̂  C22 
°° C u - C22 

+ I ] 5 1 „ ^ + 3 l n ( r a „ / 2 ) + J B 2 „ ^ + 3 , (186) Q (226) 
*=° = " " [Cu + (C„ + C12)ln(r;/r2)] + C13 

where Z L n 
c?4„+(2/7r)(?,+7)rf5„ 4Cud5„ for C , ,=C 2 2 . 

% - 7; -p^ Z7F- r 12' l ; 

„ „ . . . , . . . „ In a similar fashion, by substituting the expressions (18) for 
The coefficients in the sum over * are given in terms of ^ {r) _ t h e r e c o r r e s p o n d t w o l i n e a r equa t ions for G,„, G2n, cn 

2ds„ / 1 for each n, « = 1, . . . 00, as fol lows, 

2rf5«9i 1 

as follows: 

+T^~\ 
(CUX1+C12)/-,. • G1„+(C11X2 + C12)r,2 G2„+/l0c„ 

[ 1 + 2 ^ ! ^ + ! ) ] + - = ^ ^ , (18d) 

= - C n R * ' ( / • , ) - C u - ^ - + q,[d4„J0(na„) 

2c/5/,(-ir-af^[l + 2 g l ( /c + l ) ] + «(oa„)]; /=1.2. 
"lnk T2^^[(k+l)l]2[Cn(2k+3r-C22]' ( ' 

k+\n2k + 2 
(23) 

( - i r + 1 t f , f 
-'2nt B-,„,r= r Now, let us consider the conditions of resultant forces and 

2lk+2[(k+ l)!]2[Cn(2£ + 3) -C 2 2 ] moments. Since the stresses do not depend on z, these condi-
tAr 1 ^c^^J-^^w r i j - i ^ , I \ K \\om exist in any cross-section. It can be proved (e.g., 

\fkn - (4 l„ / i rX2* + 3)g 5 , a i+47, (*+i)n_ ( m Lehknitskii, 1963, although thermal effects are not included), 
*- C,

U(2A: + 3 ) 2 - C 2 2 J that the conditions of zero-resultant forces along the x- and y-
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Table 1 Convergence of the series solution. Values of the nth term (at r = r1) of the temperature, 
displacement, and stress quantities. 

"«(m. ') 
/ = 0.25 

rfc) 
U(m) 
%(MN/m2) 
u„(MN/m2) 

f=0.5 
TCQ 
U(m) 
%(MN/m) 
a„(MN/m2) 

n = l 
87.1 

- 0.743 xlO2 

- 0 . 9 1 0 x l 0 " 5 

0.297 x 102 . 
0.818X10' 

-0.457 XlO2 

-0 .560X10" 5 

0.183 XlO2 

0.503X10' 

« = 2 
291.0 

0.144x10° 
0.142X10 - 7 

-0.870x10" 
-0.104x10° 

- 3 0.635x10 
0.629 X 10 " l u 

-0.385x10" 
- 0.460 Xl0~ 

n = 3 

-0.426x10"-
0.687x10"" 
0.133X10"4 

0.948 XlO"6 

-0.976X10"' 
0.157X10"'7 

0.305X10"" 
0.217X10"'2 

axes are satisfied identically. The conditions of zero-resultant 
moment along x- and y-axes (and that of zero twisting mo
ment) are also satisfied by the symmetry of the problem. 
Therefore, it remains only a condition of zero resultant-axial 
force, P • 

ozz{r,f)2irrdr = Pz(t)=0. (24) 

This gives the last set of equations that are needed to deter
mine the constants Gijy Cj. In terms of 

Qi = Cnar + C23ae + Ci3az, (25) 

(24) gives 

( c 1 3 + - ^ ^ ) ( / - 2
X l + ' - r 1

X ' + 1 )G 1 0 + / l 1 G 2 0 + y l 2 c 0 

= -En ofr ,'2) + - y p - j ^ M i - d2) + dsMri/rJ (26) 

and for « = 1, . . .°°, 

is-}-! O ' 
(c13+-%-^)(r2

X' + 1 - r 1
X ' + 1 ) G 1 „ + ^ l 1 G 2 „ + ^ c „ 

= -En(rx,r2) + (q3/a„) X) ( - \)i[d^„riJx(r,a„) 
;'=1 

+ d5„riYl(ria„)], (27) 

where E^^r^) and E„ (r1; r2) are given in Appendix IV. The 
coefficients A{, y42 are defined as: 

G23
 — C\ • A< - (c"+%rr)<*' 

l-r^2+1) for Cn*C 

= C,3 + (C23 - C13)ln(r2/r,) for Cn = C22 

C23 — C13 

22 

(28a) 

r2-r2 
'2 I L (c 3 3 -

- Ci-
for C„#C2 : 

('i1-'-?) 
8Q. 

4C„ 

^ [ 4 C 3 3 C n - ( C 2 3 - C 1 3 ) 2 ] (286) 

•rfln^/T-,) for C n = C 2 2 . 

Therefore the constants cJt Gtj and, hence, the displacement 
U, can be found by solving (21), (26) and (22), (27). After ob
taining the displacement field, the stresses can be found by 
substituting in (7) and (4). 

Results and Discussion 

Before presenting specific results we shall address several 
issues that were previously raised. First, in the aforementioned 
formulation, the reference temperature was assumed to be 
zero. Since, however, thermal stresses are produced by 
temperature differentials, the analysis remains the same for 

any initial temperature other than zero, at which the body is 
assumed to be stress free. In this case, T0 is the applied 
temperature above this initial value. 

Second, in producing numerical results, the series expansion 
for the Bessel's functions (see Appendix II) cannot be used for 
large arguments. This means that there is a limit to the number 
of roots a„ of the characteristic equation (3), over which the 
summation in (11) is performed. Except for very small values 
of the time t, this does not limit the accuracy of the results. 
This is because only the first few terms of the series over n are 
dominant and there is rapid convergence as can be seen from 
Table 1, which shows the «th term of some quantities for the 
example case that was considered (the specifics of the example 
case are described in detail next), and for time values 
t = Kt/(r2-rl)

2 =0.25 and 0.5. In view of the almost-zero 
values for the third term, there is no need to consider more 
than the first three roots. For very small values of time it 
becomes, however, necessary to include more terms. 

As an illustrative example, the distribution of thermal 
stresses was determined for a glass/epoxy circular cylinder of 
inner radius rx = 20 mm and outer radius r2 = 36 mm. It is sup
posed to be made, for example, by filament winding, with the 
fibers oriented around the circumference. The moduli in 
GN/m2 and Poisson's ratio for this material are listed next, 
where 1 is the radial (r), 2 is the circumferential (6), and 3 the 
axial (z) direction: 

£ , = 13.7, E2 = 55.9, E3 = 13.7, G12 = 5.6, G23 = 5.6, 

G31 = 4.9, c12 = 0.068, i>23 = 0.277, = 0.4. 

The thermal expansion coefficients are: ar = 40x10 6 / °C , 
a9 = 1 0 x l 0 " 6 / ° C , a J = 4 0 x l 0 " 6 / o C . For this material, the 
thermal diffusivity in the radial direction is K = 
0.112X 10"5m2/s. Let us assume that the ratio of the convec-
tive heat-transfer coefficient between the composite tube and 
the surrounding medium at r = r2 and the thermal conductivity 
of the tube in the radial direction is h = 0A5 m " ' (which is a 
typical value for heat convection to the air). A temperature of 
T0 = 100 °C above the reference one is applied at /• = /•,. 

To illustrate the results, the nondimensional radial distance 
(through the thickness) r = (/• — r{)/(r2 — r{) is used. Figure 2 
shows the temperature and Fig. 3 the displacement distribu
tion for time values f=0.25, 0.5, 1.0, and 10 (the last one is a 
nearly steady, constant temperature state). The corresponding 
distribution of stresses orr, am, and azz are shown in Figs. 4, 5, 
and 6. The biggest of those is the hoop stress am and its value 
at the outer surface f = 1 is seen to be larger for f=0.25 than 
the steady-state value (for t= 10) by a factor of about 1.5. At 
the inner surface r = 0, the steady-state (F= 10) stress is com
pressive and it becomes smaller in magnitude (tending to be 
tensile) for smaller time values. The radial stress arr, is initially 
mostly tensile and becomes compressive at the final steady 
state. The axial stress azz is compressive closer to the inner sur
face (small values of r) but tensile closer to the outer surface; 
its maximum absolute value is about eight times higher at 
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Fig. 2 Radial distribution of the temperature T at different times. The 
nondimensional time is defined by t = Ktl(r2-r-t)

2. The dashed line is 
the nearly steady, constant temperature state. 
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Fig. 4 Distribution of the radial stress an 
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Fig. 3 Radial distribution of the displacement U 

t = 0.25 than at t= 10. It should be pointed out that, although 
the axial and radial stresses are smaller than the hoop, they 
may be more critical because the material is weaker in the 
directions normal to the fibers (typically the ultimate strength 
of glass/epoxy in the directions normal to the fibers may be 
less than that in the direction of the fibers by a factor ranging 
from seven to ten). These results are specific for the example 
we consider and trends may be different, depending on the 
mechanical and thermal constants of the material. They show, 
however, that transient thermal stresses may be of con
siderable magnitude, the level of which can be determined 
from the above solution. 

Summary 

In summary, we have presented a solution for the thermal 
stresses of a homogeneous, orthotropic hollow cylinder sub
jected to a constant temperature on the one surface and heat 
convection into a medium of a different constant temperature 
at the other surface. Temperature-independent material pro
perties were assumed and a series solution for the displace
ment was found. Numerical examples were presented for the 
distribution of the transient thermal stresses, which turned out 
to be of significant magnitude. 
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Fig. 5 Distribution of the hoop stress am 
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+ — - + — -

•K r ~K 

(-1> * + l / , 2 * + 2-2*+l In(ra„/2) 

22k+2[(k+l)\]2 

( - 1 ) 

[1+2$, (*+!)] 

* = o 

k+l„2k+2r2k+l 

2[(A:+1)!] !12 

where fk„ is defined in (18*/). 

{Al) 

A P P E N D I X I 

The constants d-, in the expression for the temperature (3) 
are given in terms of 

F(a„) = (fl„
2 + /!2)7o2('-i«„)-[«^i('-2«„)-^o('-2«»)]2- (-41) 

as follows: 

d*„ = 

\ + r2h\n(r2/rx) 

irT0Y0(ria„) 

d,= 
r2T0h 

F(a„) 

1 + r2h\r\r2/rx)' 

\anJx(r2a„)- hJ0(r2an)}
2, 

irT0J0(ria„) 
din = = — [aj^aj - hJ0(r2a„)]2, 

(42) 

(A3a) 

(A3b) 

A P P E N D I X III 

In the event that for a certain k, Cn(2k + 3)2 = C22, the term 
in the sum in (18/V) and (196) for this k is 

Bmr2k^\n2{ran/2) + B2nkr
2k^\n(ran/2), 

where now 

2d5„(-l)k+1a2k+1U+2qt(k+l)] 

'lnk Tr22k+2[(k+l)l]24Cn(2k+3) ' 
B\„t — 

(AS) 

(A9a) 

B-, 
(-l)*+ 1a,2* {/*, 2rf5 B[l+2g|(^+l)] 

22*+2[(A;+l)!]22C11(2A: + 3) Hk" 2ir(2k + 3) 

(A9b) 

•}• 

A P P E N D I X II 

The Bessel functions of first- and second-kind of order zero 
and one have a series of expansion of the form (see e.g., 
Wylie, 1975) 

™ ( _ \)^x2k v"l ( — l)kX2k+l 

Jo(*) = L o 2 t , t ! ) 2 ; - A M = L 22k+im+l) > ^ 4 > 

(-1)**2* 2 

A: = 0 

2 
Y0(x)= ( l n ^ - + 7 ) y 0 ( x ) £ 

2 / x \ 2 1 
y, (x) = (in—- + y)Ji (x) 

7T V 2 / IT X 

*=, 22k(k\) 

2 1 

2 • * ( * ) , 

" T £ 22*+'(/t!K/t+i)! v2V,(^+1)~TTr)-

(-45a) 

0456) 

In the above expressions 7 = 0.577215 . . . is the Euler's con
stant and \p(k) is defined as 

2 £ 
(A6) 

The above series expansions can be used to calculate the 
Bessel's functions up to a value of the argument of about 
x= 18. They are rapidly convergent, especially for small values 
of the argument (adopting a smallest number limit of 10 x ~71 

would require, at most, 72 terms at x= 18). 
Using the series expansion, we obtain the following equa

tion in place of (14): 

A P P E N D I X IV 

For Cn J±C22, the expression for E0 in (26), is: 

Eo(.rltr2) 
Qir\d2 t„ , ̂  „_,__ ,._x , (r2

2-rf) 

2(Cn-C22) 

[(Cn-C23)q2d2 + 2(Cn + C23) 

(C23 + Cn)\n(r2/r,) + 

Q\d2+q2dl 

4 ( C U - C 2 2 ) 

2Cuq2d2 

}}• C\ i C22 

(/410a) 

and the expressions for E„, n= 1, . . .oo, in (27), are 

(ri-r?) 
En{rl,r1)=

 2
2

 U[(C23 + Cl3)B0 

- (C 1 3 -C 2 3 ) ] 
ir (Cn-C22) 

+ — dirn+ri t(-l)'^n(r,.an/2) + S„, (AlOb) 
* ( C l i _ C 2 2 ) /=! 

where 
/ f ^ l n ( y ^ / 2 ) 

S„= £ S ( - 1 V 9;i7•"H l r f[(C23 + (2t+3)C1!] 

+ II L(-i)'^rrK*[C« + (2/:+3)Cl3] 

*r = 0 i = l Z « - t - 1 v. 

+ 5 I . 
2A: + 4 -}• (/111) 

For C^! = C22, the expression for E0 is 
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term in the sum S„ in equation (/111) is 
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Thermal Expansion of 
Three-Phase Composite Materials 
Exact expressions are found for overall thermal expansion coefficients of a com
posite medium consisting of three perfectly-bonded transversely isotropic phases of 
cylindrical shape and arbitrary transverse geometry. The results show that 
macroscopic thermal expansion coefficients depend only on the thermoelastic con
stants and volume fractions of the phases, and on the overall compliance. The 
derivation is based on a decomposition procedure which indicates that spatially 
uniform elastic strain fields can be created in certain heterogeneous media by super
position of uniform phase thermal strains with local strains caused by piecewise 
uniform stress fields, which are in equilibrium with prescribed surface tractions. The 
procedure also allows evaluation of thermal stress fields in the aggregate in terms of 
known local fields caused by axisymmetric overall stresses. Finally, averages of local 
fields are found with the help of known mechanical stress and strain concentration 
factors. 

1 Introduction 
In his 1967 paper, Levin found that macroscopic thermal 

expansion coefficients of an elastic heterogeneous composite 
medium, consisting of two distinct, perfectly-bonded isotropic 
phases of arbitrary shape, depend in a unique way on the 
overall elastic moduli of the aggregate and on the ther
moelastic constants of the phases. Such coefficients are the 
average overall strains caused by a uniform thermal change of 
unit magnitude in a traction-free composite. Levin's results, 
and their extension to binary systems with anisotropic consti
tuents (Rosen and Hashin 1970), permit a direct evaluation of 
these coefficients in terms of the known overall elastic moduli 
and local thermoelastic constants. However, the approach 
cannot be applied to composites of three or more constituents 
without additional information about local stress concentra
tion factors. Thermoelastic constants of such multiphase 
media can be bounded with the help of thermoelastic ex-
tremum principles (Schapery 1968, Rosen and Hashin 1970), 
or evaluated in terms of estimated values of phase stress con
centration factors which are indicated by certain averaging 
techniques (Christensen, 1979), but their direct evaluation ap
pears possible only in a few special cases. For example, Hashin 
(1984) recently found an exact relation between the thermal 
expansion coefficients and the bulk moduli of certain 
statistically isotropic poly crystalline aggregates. 
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This work is concerned with the macroscopic response of 
three-phase fibrous composite materials which are subjected 
to simultaneous increments of uniform thermal change and 
uniform overall stress or strain. In particular, we derive rela
tionships between overall thermal expansion coefficients and 
the overall elastic moduli of a composite medium which con
sists of three perfectly-bonded cylindrical phases of arbitrary 
cross-section. Similar connections are found between 
mechanical and thermal microstress fields. Each of the phases 
can be transversely isotropic or isotropic; phase properties are 
assumed to be temperature independent within the applied in
crement. Unidirectional hybrid fiber composites, or binary 
systems reinforced by coated aligned fibers, can be regarded as 
particular examples of such three-phase media. 

2 Governing Equations 

The composite material under consideration consists of 
three perfectly-bonded homogeneous phases. Each of the 
phases is of cylindrical shape and is, at most, transversely 
isotropic about the "fiber" direction x3 of a Cartesian coor
dinate system. In the transverse x1x2-plane, the cross-sections 
and the distributions of the phases can be arbitrary, providing 
that all such transverse sections are identical and the com
posite can be regarded as statistically homogeneous and free 
of voids. Overall isotropy in the transverse plane is permissible 
but not required; thus, the composite medium may have only 
one plane of elastic symmetry. The thermoelastic constants of 
the phases are known. Also, the overall elastic stiffness tensor 
L and the compliance tensor M of the aggregate are assumed 
to be known; they can be determined experimentally or 
estimated by various averaging methods. For example, the 
self-consistent method (Hershey, 1954; Budiansky, 1965; Hill, 
1965), the Mori-Tanaka (1973) procedure, and the differential 
scheme (McLaughlin, 1977; Norris, 1985) lead to such 

418/Vol. 56, JUNE 1989 Transactions of the ASME 

Copyright © 1998 by ASME
Copyright © 1989 by ASME

  Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



do-2
m 

6ok 
dSA 

do-l 

da! 

(68U 

m 

I Off" 

- (d*K 

^ K 
dST 

m 

dSA 

^ 

dST — - I -

(d0,da) 

Fig. 1 Scheme of decomposition procedure 

estimates. Also, Walpole (1984) gives bounds on overall 
mechanical properties of some of the multiphase materials 
considered herein. 

A representative volume element V of the composite is 
selected and subjected to certain uniform overall stress o0 or 
strains i0 which are imposed by prescribed surface tractions or 
displacements applied at the surface S of volume V. Also, a 
certain uniform thermal change has been applied such that 60 

is the current uniform temperature in V. Suppose that at this 
particular point of the loading sequence, the aggregate is sub
jected to simultaneous, uniform, infinitesimal increments of 
dd and do, or of dd and di. The response of the aggregate to 
these load increments is described by the constitutive equa
tions 

de, =deu + de22, de2 = de. 

de = Mdo + mdO, do = Lde-ldd, (1) 

where L, M are the known (6 x 6) overall stiffness and com
pliance matrices, and 1, m are (6x1) overall thermal stress and 
strain vectors which are to be found in terms of L or M, and 
the thermoelastic constants and volume fractions of the 
phases. 

The thermoelastic properties and response of the transverse
ly isotropic phases can be described by phase variants of equa
tion (1). A particular form, which will be useful in the sequel, 
relates the axisymmetric stress and strain invariants of the 
transversely isotropic medium (Dvorak, 1986): 

de, 

de2 

1 

~k~E 

do. 

do-, 

k f 

1 n 

n - /" 

-/ k 

fde, 

do, 

do-, 

de-, 

ka + l(3 

Ict + nB 

dd (2) 

dd (3) 

where k, I, n are Hill's (1964) elastic moduli, E = n - P/k, 
a = 2a r , B = aL, and aT, aL are the linear coefficients of ther
mal expansion in the transverse plane and in the longitudinal 
direction, respectively. For an isotropic phase with the usual 
elastic constants K, G, and v, one finds that k = G/{\-2v), 
l=K-2G/3, and n= K+4G/3. The strain and stress in
variants are defined as: 

do, = Vi(don + do12), do2 = da33. (4) 

In the sequel, the three phases will be denoted by letters/, g, 
and m, or by a single letter /•=/, g, m. For example, the phase 
volume fractions cf + cg + cm = 1. Equations (2), (3), with 
appropriate values of thermoelastic constants, will describe 
the response of each phase to the respective axisymmetric in
variants (4). 

3 Decomposition Procedure 

The unknown thermal stress and strain vectors 1, m of the 
three-phase composite medium will be found with a special 
form of the decomposition procedure of Dvorak (1983, 1986, 
1987). In the first step of the procedure which is illustrated in 
Fig. 1, the three phases are separated and surface tractions or 
displacements which preserve the current local stresses or

0 and 
strains er

0 are applied to each phase r = f, g, m. Then, a 
uniform thermal change dd is applied to each phase. This 
causes uniform, but dissimilar thermal strains or stresses (2), 
(3), in the phases, so that the phases are no longer compatible 
and cannot be reassembled. To make the phases compatible, 
auxiliary uniform stress increments of as yet unknown 
magnitude are applied to each phase simultaneously with dO. 
These stress increments are limited to the components which 
appear in (4), and are axisymmetric, i.e., do,, = do21. 
Therefore, the corresponding strains are also limited to those 
in (4), with de„ = de22, and follow from (2). The auxiliary 
uniform fields in the separated phases, which are denoted in 
the sequel by top hats, are thus given by: 

de{ = (nfdo{-lfdo{)/kfEf + afd6, (5) 

de\ = (rigdoi - lgddi)/kgEg + <xgd6, (6) 

de?= (nmdoT- lmdo? )/kmE„, + amdd, (7) 

der
2 = (-lfddf,+kfdd{)/kfEf + ^fdd (8) 

de\ = ( - lgdoi + kgdo\)/kgEg + Pgdd (9) 

di?= ( - lmdd'{'+ kmdo"2)/kmEm + pmdd. (10) 

We recall that each of the contributing fields in (5) to (10) is 
axisymmetric and spatially uniform. Therefore, internal 
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equilibrium and compatibility of the phases can be assured by 
the following conditions which relate the total uniform fields: 

de{ = d^ = deT 

do{ = ddj=da'?=dQT 

de{ = dis
2 = d^ 

Cjda{ + cgda\ + cmda2 = dQA. 

(11) 

(12) 

(13) 

(14) 

Here, dQA, dQT are the overall stress components which 
must be applied to the surface S of V while da\ and da2 are ap
plied to the phases. They are defined by the overall forms of 
(43, 44), but unless the composite medium has an axis of rota
tional symmetry x3 they are not necessarily invariant in the 
overall stress space. 

The fourteen equations (5) to (14) can be solved for the 
twelve stresses and strains da\, dar

2, de\, dir
2, and for dQA, 

dQT. The solution gives the magnitudes of the overall stress 
components dQA, and dQT, which, if applied together with 
the uniform thermal change dd, would create a spatially 
uniform incremental strain field in the heterogeneous 
medium. In reality, such overall stresses are not prescribed. 
Therefore, they must be eventually removed by application of 
- dQA, and - dQT to the surface S of V. 

The existence of the solution of the system of equations 
should be verified in each case, but if there are no special rela
tionships between phase properties, the solution exists and can 
be found as follows: Equations (5) to (7) are substituted into 
(11), and (8) to (10) into (12). These, together with (13) and 
(14) are then solved in terms of dd. The result is: 

dQA =sAd6 (15) 

dQT = sTd9 (16) 

where, 

$A = l(a2bl-alb2)sT + a3bl -a163]/(ft1 -a{) (17) 

sT = (fi /„,Cg/--B /gCm/)/(/lg/5 /m -BfgAmf) (18) 

with scalar quantities 

Ap«=[\TX~TX) ~~^T \TX~I^)\ (19) 

Bpq=(lp/kp-lg/kq)/Ep (20) 

Cpq =lp(l3g- Pp)/kp + N - «p) (21) 

where the subscripts/?, q, assume the phase designations/, g, 
m for the phase moduli kr, lr, nr, and Er; p ^ q. 

The remaining terms in (17) are: 

a, = C + c. J^.MlL + c,„ Jj^.J^L (22) 

k.E„ / « 

kfEf lg k}Ej lm 

a = c ^ ^ ( "' Hf \ 
2 8 I, V*A W 

•mEm / nm nf \ 

/„ \kmEm kfEf) + c„ (23) 

a3 = cgkgEg<^g - <*fVh + cmkmEm (am - af)/lm (24) 

bx=cf+ cgEg/Ef + cmEm/Ef (25) 

b3=cgEgWf-l3g)+cmEm Wf-PJ. (27) 

The solution of the system (5) to (14) can be written in the 
following form which reflects a change from the invariants (4) 
to the (6x1) vectors. The local auxiliary strain fields are: 

deii =dif
22 = 

de{,= dei = h,dd 

de( = h,dO 

deg
u = deg„ 

1 
de\ = hxd6 

des,,=del = h,dd 
(28) 

dS •- den = -
1 

deT=h,dd 

de\\=d&=h-idd 

where 
AgfCmf~AmfCgf 
AgfBfm ~AmfBfg 

)/(kfEf) + Taf 

h - U A*f A ofCmj AmjCgf 
AgfBfm~AmfBfg 

-¥T)/{K •fEf)+l '/• 

(29) 

(30) 

The local auxiliary stress fields are: 

dd{i = da{2 = da{ = sTdd 

da{3 = da{ = ySTd6 

daj, = da\2 = da\ = sTdd 

doj3 = da\ = psTdd 

ddV\=dan=ddT=srdd 

(31) 

daf3=da2"=4'STde 

where 

(32) 

(33) 

(34) 

(35) 

y-(AgfCm/-A
m/Cgf)/(BfmCgf-BfgCmf) 

P=Dgf/Bgf+Cfg/(sTBgf) 

yp = Dmf/Bmf + Cfm / (sTBmf) 

and, with reference to the notation used in (19) to (21): 

n = \( no "s \ !i- ( 1P '* V 
" V\kpEp kgEgJ kg \kpEp kgEg) 

The final results that appear in the sequel assume a more 
concise form with the definitions: 

h = [hu hu h2, 0, 0, OF 

s=[sT, sT, sA, 0, 0, 0 ] r 

7 = [ 1 , 1 , 7 , 0 , 0 , 0 ] r (36) 

p = [l, l , p , 0, 0, 0 ] r 

* = [ 1 , 1, *, 0, 0, 0]T 

where [ ]T denotes a transpose and the coefficients appear in 
(17), (18), and (32) to (34). 

In the final step of the decomposition procedure, the phases 
are reassembled and the auxiliary surface tractions are remov
ed by application of overall stresses - dQA, —dQT. This leads 
to the results described in the next section. 

4 Overall Properties and Local Fields 

The aforementioned results make it possible to write direct
ly the expression for the overall strain increment caused in the 
composite by superposition of simultaneous increments of dd 
and do, and also the expression for the overall stress increment 
in a composite subjected to simultaneous changes dd and di: 

di = hd6 + M(da-sd6) 

do = sd6 + Ude-hdd). 

(37) 

(38) 

A comparison with (1) yields the unknown overall thermal 
strain and stress vectors, which contain the desired overall 
thermal expansion coefficients: 
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m = h - M s (39) 

l = - s + L h . (40) 

To facilitate applications we note that the overall thermal 
strain vector 

m = [ a i , a2, a3, a4 , a5 , a6]
T (41) 

and 

l = L m . (42) 

If the medium has only one plane of elastic symmetry 
perpendicular to x3, then the overall compliance M in (39) 
depends on 13 independent elastic coefficients. Examples in 
Section 5 show that, in this case, a4 = as = 0. On the other 
hand, if the medium is transversely isotropic, then m can be 
written in the form 

m=[aT, aT, 0 4 , 0 , 0 , 0 ] r (43) 

where aT, <xA are the overall linear coefficients of thermal ex
pansion in the transverse plane and in the longitudinal direc
tions, respectively. Then, using (39), one can find these coeffi
cients in the explicit form: 

1 
• h 

aA=h 

1 2(nk~P) 

1 

(nsT-lsA) 

nk-P 
(ksA-lsT). 

(44) 

(45) 

If the volume fraction of one of the phases is reduced to 
zero, then one recovers from these formulae the results for 
binary composites given by Dvorak (1986). 

Note also that the decomposition procedure suggests the 
following connection between thermal microstress fields in the 
composite and mechanical microstress fields under axisym-
metric uniform overall stresses. In particular, suppose that lat
ter are written in the form 

do{x,) = B{x,) do (46) 

where B(x,<) describes the spatial distribution of the local 
stresses under any overall stress da. As a minimum, B(*,-) must 
describe the response to axisymmetric uniform stresses dau = 
da22 = dait and dd33 = dd2. According to the decomposition 
sequence, the local thermal stresses after the reassembly of the 
aggregate are given by (31). In the final step, one must remove 
the axisymmetric surface stresses dQA, dQT, represented by s 
in (36). Of course, that can be done using (46) to yield: 

In phase / : do(Xj) = sTy + B(Xj)(d& - sd6) 

In phase g: do(Xj) = sr p + B(Xj)(do - sdd) 

In phase m: do(Xj) = sT 4/ + B{Xj){dd-sdd) 

(47) 

where dd and do are the prescribed uniform thermal change 
and overall stress vector, respectively. 

Similarly, if instead of (46), there is a known connection 
between local and overall strains in the form: 

dt(x,) = A(Xj)di (48) 

then one finds from (28) and (36) the local strain field in the 
aggregate loaded by a uniform thermal change dd and an ar
bitrary overall strain de: 

d((x,) = hdd + A(Xj)(di -hdd). (49) 

These results can be readily reduced to those for average 
stresses and strains in the phases. If the mechanical stress and 
strain concentration factors Br and Ar of the phases are 
known, then the local averages can be written in the form 

dor = Brdo + brdd 

dir = Arde-ardd (r=f,g,m) (50) 

where the phase thermal stress concentration factors are: 

bf = sTy — By-s 

bg = sTp — Bgs 

bm = sTi - B m s 

ar = (A, - I )h , 

(51) 

r = (f,g,m). 

5 Examples 

To illustrate the results (39) to (42) we consider first a three-
phase composite with transversely isotropic phases. Overall 
material symmetry elements are limited to a single plane of 
elastic symmetry with the normal x3. The overall compliance 
matrix M has the following form: 

M = 

M,, M, 12 

M „ M,. 

Ml3 

0 

0 

M23 

0 

0 

M2, 

M31 

0 

0 

0 

0 

0 

0 

0 

0 

Md, 

Md< M,. 

M,« M, 36 0 0 

Mu 

M2, 

M3( 

0 

0 

(52) 

The stiffness matrix L is formally similar to M. Now, h is 
taken from (36) and substituted, together with M, into (39). 
That leads to an explicit form of (41): 

MusT—Mns i u o T \2^T -MnsA 
h j — Ml2sT—M12sT—M23sA 
h-, -M,3s i3 a r ' -M23sT-

0 
0 

•MnsA 

-Ml6sT-M26sT-M36sA 

(53) 

One also finds from (40) that 

1 = 

- 5 7 - + L11/!1+Z,12A1+L13/!2 
—sT + Ll2nl +L22hl + L23n2 
~sA+Ll3hl+L23hl+Li3h2 

0 
0 

L,nh, +L«/ i , +L3f,h7 

(54) 

If the arrangement of the three transversely isotropic phases 
is such that the composite medium is transversely isotropic, 
then the coefficients M16 = M26 = M36 = M45 = 0 in (50) 
and also, Ll6 = L26 = L36 = L4S = 0. The specific forms of 
(41) and (42) then follow in an obvious manner from (53) and 
(54). 

6 Conclusion 

The results represent exact connections between overall 
elastic thermal stress and strain vectors, overall stiffness L or 
compliance M, and phase thermoelastic properties of a three-
phase composite medium consisting of perfectly-bonded cylin
drical phases of arbitrary transverse geometry. They remain 
formally unchanged, except for L and M, if the overall elastic 
symmetry properties of the composite are modified within the 
indicated constraints. Application of the decomposition pro
cedure is limited to such combinations of phase properties for 
which the governing equations can be solved. The exceptional 
cases can be established by examination of (17) and (18). For 
example, one such exception would arise if all three phases 
were isotropic and if any two of them had the same Poisson's 
ratio. Another such exception occurs when the three phases 
have identical mechanical properties but different thermal ex
pansion coefficients. Furthermore, in an n-phase fibrous 
medium the decomposition leads to 5n - 1 equations for An + 
2 unknowns. Hence, the system can be solved for n = 3, and it 
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allows a choice of an additional constraint if n = 2. This last 
property was utilized by Dvorak (1986) in an application of 
this procedure to binary fibrous systems with an elastic-plastic 
matrix. 

A particularly useful result is given by (47) and (49) which 
show that not only the overall response (37) and (38), but also 
the local thermal fields can be evaluated from known 
mechanical fields by a modification of the overall stress or 
strain increment, and by an addition of a piecewise uniform 
stress field or a uniform strain field. 
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Free Vibrations of the Rotating 
Shells of Revolution1 

1 Introduction 

This paper is devoted to the problems of free vibrations of 
thin rotating shells. The theory of vibration of rotating shells 
is part of the theory of an arbitrary rotating body and the 
results which are valid for an arbitrary body are also valid for 
the shells. Though numerical methods are the main approach 
to the investigation of the dynamics of rotating bodies, some 
analytical results have been obtained for some simple bodies 
like rotating beams and discs. The mathematical theory of 
nonrotating thin shells is well developed. Several of the most 
successful are two-dimensional theories of the Kirckhoff-Love 
type. Using the Novozhilov shell theory, which is of this type, 
A. L. Goldenveiser, V. B. Lidsky, and P. E. Tovstik have 
developed the theory of asymptotic integration of the equation 
of vibration of shells. This theory allows one to estimate and, 
in some cases, to find analytical solutions for the eigenvalues. 
The main results of this theory are presented by Goldenveiser 
et al. (1979). 

The aim of this paper is to apply asymptotic methods to the 
solution of the eigenvalue problem for a rotating shell. We will 
use Novozhilov's two-dimensional shell theory to obtain the 
equations for the vibration of the shell and the theory of 
asymptotic integration of the differential equation to solve the 
eigenvalue problem for these equations. 

For the last few years the analytical approach to the solution 
of the eigenvalue problem for a rotating shell has become 
popular. In the list of references we only mention research 
which deals with the application of two-dimensional theories 
for obtaining the equation of vibration and papers devoted to 
the mathematical consideration of these equations. Unfor
tunately, space does not permit a detailed description of these 
works. 

2 Geometry of a Shell 

Consider the thin shell of revolution of constant thickness 
h. To describe the shell geometry we introduce an orthogonal 
curvilinear coordinate system, connected with the meridans 
and parallels of a shell. A position of a point on the neutral 
surface of a shell is defined by a longitudinal angle 

'This paper was prepared by Dr. Smirnov during his participation in the of
ficial exchange between Carleton University, Ottawa, Ontario, Canada and the 
State University of Leningrad. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF 
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10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
Applied Mechanics Division, January 13, 1988; final revision, May 1, 1988. 

Paper No. 89-APM-23. 

a ( 0 < a < 2-7r) and the length of the arc of meridans^, <5<s2)-
The shell is limited to two parallels s = sx and s = s2. As a par
ticular case, a shell may be closed at the top (sphere, cupola). 

The geometry of the shell is characterized by the function 
B(s), which is the distance between the axis of symmetry and 
the neutral surface (see Fig. 1). We will also use functions R{ 

and R2, which are the main radii of a curvature and function 
d(s), which is the angle between the initial normal to the 
neutral surface and the axis of symmetry. These functions are 
expressed through the function B: 

1 

~Rl 
dd 

~~ds~ 

B" 

V l - f i ' 2 
1 

~R~, 

sinfi V l - 5 ' 2 

B B 

COSd=B',0<6<TT. 

At each point of the neutral surface we introduce a local 
system of cartesian coordinates, the axes of which are the 
tangent to the meridan, the tangent to the parallel, and the in
itial normal. U is a displacement vector with components u, v, 
w in the local coordinate system. 

The shell rotates with the constant angular velocity 0 
around the axis of symmetry. 

We use the following notation: 
E = Young's modulus 
a = Poisson's ratio 
p = density of the shell material 
/ = the length of the cylindric shell 

ek, u = components of the tangential deformation and 
the angle of the elastic rotations 

T,H = kinetic and potential energies 
/ = time 

Fig. 1 The geometry of the shell of revolution 
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We will nondimensionalize the variables as follows: 

(U ,u,v,w,Rk,B,s,l) = R~l(U* ,u* ,v* ,w* ,R£ ,B* ,s* ,/*), 

(ek,u) = (eZ,u*),t = k-[t*,k = R. 
P ( l - c 2 ) 

E ' 

h = (R^\2)~lh*, (co.fi) = /t(co*,fi*), 

{T,Ii) = {\-v2){Eh*Y\T*Jl*), 

where R is a characteristic radius of a shell. For example, if 
B(st)piO we can assumeR=B(s1). 

3 The Equation of a Motion 

There are various ways to get the equations of vibration of a 
rotating shell. We will use Hamilton's principle. The 
mathematical formulation of this principle is 

5(r-n) = o, (i) 
where Tis the kinetic energy of the shell and n is the potential 
energy of the shell. 5 is a symbol of variation. If V is the 
velocity of a shell element, the kinetic energy of the shell will 
be 

r = ^ r f " \ 2V2Bdsd<p,V = ilx(r + V) + i), 
2 Jo Jsi 

(2) 

where r is a radius vector to a point on the neutral surface. 
Here we take only the linear displacements terms. In the work 
by Vorobiov and Detistov (1981a) some nonlinear terms were 
retained. 

The potential energy n may be expressed as 

1 r2ir rs2 
n = -— IlBdsd<p, 

2 Jo Jii 

(3) 

Here the second II is a strain energy density. We will consider 
it as a function of the displacements and their first derivatives. 

If we substitute expressions (2) and (3) into (1) we obtain the 
equation of vibration 

(pU + pfi x [JIx (r + U)] + 2pfi x U 
0 J st 

+ Vll{V})5VBdsd<p = 0, (4) 
where 

an I a / an \ 
V ~Hu B~"ds\ dlL'/ 

an 
9<P a u ; 

For arbitrary elastic bodies this equation has been obtained by 
Vilke (1986), using the Lagrange-D'Alembert's principle. The 
precise form of the density n depends on the type of shell 
theory used. We will discuss this problem next. The only con
dition, which the shell theory must satisfy, is that the 
reciprocity principle of Betti is valid. More details about the 
application of Betti's principle in the theory of shells can be 
found in Goldenveizer's monograph (1961). 

Equation (4) is valid for all theories of shells in which the 
strain energy density is only a function of the displacements 
and their derivatives, for example, theories of the Kirchoff-
Love type. Theories of other types may include additional in
dependent variables. For example, in Reisner's shell theory, 
the two angles of rotation of the normal to shell element are 
independent quantities. Using this theory of shells the equa
tion for the vibrations of a cone was obtained by Vorobiov 
and Detistov (1981a). 

We will investigate small vibrations of shells about the axi-

symmetric equilibrium state generated by centrifugal forces. 
We represent the displacement \](s,<pj) as a combination of an 
initial axisymmetrical displacement U0^) and an additional 
displacement Ul(s,<p,f) 

U ( S , ^ , 0 = U°(5) + U1(S,VJ,0. (5) 

The expressions for the vectors r and fi in a local system of 
coordinates will be 

r = (Bcos0,O, - £sin0), fi = ( - Qsin0,O, - ficos0). (6) 

Since strain energy density n is positive and we are only con
sidering small deformations, we may assume that this density 
is a quadratic form of the deformations and the angles of rota
tions. The actual expressions for the deformations and angles 
of rotation will be introduced next. For now, we write them in 
the form 

auyi+Lbuyi 
j J 

Here x is any deformation or angle of rotation and y is a 
displacement or its derivative. Geometrical linear shell theory 
assumes btj = Q. 

Now we represent the strain energy density in the next form 

n[u1,u°]=n[u1]+nHU',t/l]+n0[u
0] 

+n0[u
1,u°]+n,[u1,u0]. (7) 

Here n[U'] is the quadratic form of the displacements U. 
UF[Ul ,U°] is the linear form with respect to both U1 and U°. 
n0[U°] is a term depending only on U°. nn[U' ,U°] is the 
quadratic form with respect to U1 and the linear form with 
respect to U°, in n j U 1 ,U°] we include all other items. In our 
consideration we will neglect the last item. We will also omit 
the index ' " " for the displacement. 

Substituting expressions (5-7) into equation (4), and taking 
into account the independence of the coordinates, we get two 
vector equations: 

LF(U°) = F, (8) 

L(V) + fi2Ln[U°,U] = U + 2fiZ,cU + Q2LeV, (9) 

where 

Lc = 

L.= 

0 
-COS0 

0 

- COSZ0 

0 
sin0cos0 

COS0 
0 

- s i n 0 

0 
sin<9 

0 

0 sin0cos0 
- 1 0 
0 - sin20 

^(u°)= - vnF[u°,u], L0(U°,U)= --QJ-VIIDEUMJ], 

i ( U ) = - v n [ U ] , F = D2r = fi2(5cos0,O,-5sin0). (10) 

From equation (8) we can find the initial displacements and 
stresses in a shell, which we will substitute into the equation of 
free vibration of a shell (9). Operator L corresponds to the 
nonrotating shell. Operator La describes the change of the 
geometry of shell and the existence of the initial stresses. The 
equation of vibration of rotating shells was obtained in a 
number of papers for different kinds of shell geometry (most 
often for cylinders) under different assumptions for different 
types of shell theories. Some of these papers are listed in the 
references. In these papers the equation of vibration has the 
different operators L and La and depend on the type of shell 
theory and assumptions about the initial equilibrium. 
However, for all theories of the Kirckhoff-Love type, the dif-
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ferences in operators L will be only in terms of order h2 and 
higher. 

The scalar product of the vectors \Jk and U/ are determined 
by the formula 

(U*,U,)= (ukUi + vkv, + wkWi)Bds. 

For a large class of boundary conditions all operators included 
in equation (9) are self-adjoint, i.e., 

(.LVk,V,) = (L\J„Vk). (11) 

For that it is only necessary for the principle of Betti to be 
valid. We will use only those boundary conditions, which are 
usually called "idealized." For example, the boundary condi
tions of free, clamped, and freely-supported edges are of that 
kind. All idealized boundary conditions are linear, hence, 

r(u) = o, r(u°) = o 
are boundary conditions for the initial and additional 
displacements. 

4 The Form of Solution 

For linear and homogeneous boundary conditions we can 
search the solution of equation (9) in a form of "running 
waves," that is 

u(s,<p,t) 

oo oo 2 

= E E Ttumk(s)Cmkcos(m<p + umkt-a') 

m = 0 k=-<a 1=1 

V(S,ip,t) 
oo oo 2 

= D D Ydvmk(s)Cl
mkf,m{m<p + wmkt-a

I), 

m = 0 Ar= - c o ; = i 

W(S,<p,t) 
00 CO 2 

= E E X) wmk(s)C'mkcos(m<p + oimkt-a
l), 

m = 0 Ar= - c o / = 1 

«'=(), 
~2 

(12) 

where a1 is the phase, m is the wave number along a parallel, 
and wmk is the frequency of the free vibrations. Since the 
boundary conditions and equations of vibrations are linear, 
we can consider the vibrations separately for each wave 
number m. The equation of vibration of a shell for fixed m is 

Lm (Um) + Q2Lam (Um) + uiVm + 2a>,„QLc„,Um 

+ Q2LemVm=0, r ( U m ) = 0 , 

where 

(13) 

J-Tm — 

'-'em ~ 

o - cose 
- cose 0 

0 sin0 

0 
sinfi 

0 

cos2e 0 - sinecose 
0 1 0 

-sinecose 0 sin2e 

The operators Lm and LQm are operators L and La for fixed m. 
Further, we will consider the problem for fixed m and omit the 
index "m" for both variables and operators. 

It is useful to write the energy equation corresponding to 
vector equation (9). Multiplying it by U, we obtain: 

co2r+2a)firc + n2re=n+nSJ, (14) 
where 

(U,U)= f 2 (u2 + v2 + w2)Bds = 2T, 

( L ( U ) , U ) = - ( v n [ U ] , U ) = - 2 ( 2 UBds=-2a, 
J Si 

(L„(U),U) = •(vnoru0,u],u) 

„Bds=-2Un 
2 fs2 

( L c ( U ) , U ) = - 2 f 2 (cos8u-smdw)vBds = 2Tc, 
J S± 

(Le(XJ),U)= P ((cosdu-sin6w)2+ v2)Bds = 2Te. 
J i-j 

Here II is the potential energy of the additional displacements, 
IIn is the potential energy of the initial stresses and 
displacements, and 7Ms the kinetic energy of the relative mo
tion. All energies are computed for the fixed mode. 

It is known that the nonrotating shell of revolution has a 
series of frequencies of free vibrations and modes, for which 

uk = u_k, Uk=U_k. (15) 

That is, two running waves propagate in opposite directions 
along the parallel with equal angular speeds. The relations (15) 
can be used to transform expressions (12). We consider the 
sum of two waves, running in opposite directions for fixed k, 
with the arbitrary constant in a form 

-C2^ = 0. (16) Ck — C^k, Ck = 

Thus, for the displacement u, we get 

u — Cukcos,m<psmwkt. (17) 

This is a standing wave, oscillating with a frequency oik. 
Now consider the case of a rotating shell. For the rotating 

shell the expressions (15) are not valid. We introduce the 
parameters a and /3 as 

1 1 
(uk + co_k) 

and amplitude vectors as 

Vl = Vk + l)^,V2
k = Vk-\J_k. 

The arbitrary constants are determined by expression (16). 
Making the same transformations we get 

u = C(ukcos,{m<p + j3t)cosat + u2sm(m<p + f}t)sinat). (18) 

This is a superposition of the two standing waves, oscillating 
with a frequency a and precessing with the angular velocity 
13/m. It is clear that for nonrotating shell a = uk, (3 = 0, 
U 2 = 0 , and expression (18) transforms into expression (17). 
The reader has to pay attention that the rotation generates 
both precession of the modes and shift of the frequency of 
oscillation. 

5 Application of a Small Disturbance Method 

Let Q be the small parameter. The correctness of such an 
assumption has been discussed by Smirnov and Tovstik (1981) 
and Lidsky and Tovstik (1984). We expand frequencies wk and 
amplitude vectors Vk in a series of the parameter fi, that is 

^ = a ( f i ) + / 3 ( Q ) , « _ i t = - a ( Q ) + j 8 ( 0 ) 
Co oo 

a(Q)=co0+ Dfi2 'a2 , , /3(Q)= X)f i 2 ; + 1 fe + 1 , 
i=i ;=o 

CO 

U * ( 0 ) = E ( - 1 ) ' U , 0 ' . (19) 
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The frequency u0 is the corresponding frequency of the 
nonrotating shell. It is obvious that a(0) = co0 and 0(0) = 0. 
Substituting these expressions (19) into equation (13), and 
equating the coefficients for equal powers of Q, we get 

LU„ + «gu0 = o, r(u0) = o 
LVl+(4Vl = -2u0(LcV0 + PiV0), r ( U , ) = 0 

LU2+cogU2=-2w0(L cU1+|31U1)-(2«o«2 + l8?)Uo-
- ^ . L c U o - ^ U o - L n U o , r (U 2 ) = 0. (20) 

These equations determine the amplitude vectors U and free 
frequencies co. The first equation gives the free frequencies and 
modes of the nonrotating shell. To obtain the coefficient plt 

we scalar multiply the second equation by U0 and apply the 
property of self-adjoint operators (11). Hence, 

?C (Un) 
/3 = /3,Q + 0(G3) , fl, = - CV °; . (21) 

The speed of precession is determined by /3/w. 
Applying the same method we can find all the coefficients in 

the series a and fi. We write only the second term for a. 

_ 0\ ( Z C U 1 , U 0 ) + /3 1 (UI,UQ) 
012 2w0 2T(U0) 

rg(u0) + i7n(u0) 
2co0r(U0) 

Later we will call fii the coefficient of bifurcation and a2 the 
coefficient of shift. We will assume that it is possible to neglect 
the second term in formula (22). This assumption has been 
verified by Smirnov and Tovstik (1982) for some special cases, 
for example, the low frequency vibrations of shells of zero 
curvature. However, in the general case, the error of this 
assumption has not yet been established. With this assump
tion, the formula for a may be rewritten in the form 

a = a2Q2(l + 0(Q2)), a2=-—l/3f+ — — I. 
2oi0 \ T(\)0) / 

(23) 

Estimating the coefficients of bifurcation and shift requires 
the amplitude vectors of the nonrotating shell U0 . This is 
possible only if we know the operator L or the density II. The 
form of this density depends on the type of the shell theory. In 
the next section we will apply Novozhilov's shell theory, which 
is of the Kirkhoff-Love type. 

It is possible to make some conclusions about the coefficient 
of bifurcation. Vilke (1986) has shown that - 1 < /3 < 0. 
Egarmin (1986) has shown that /3 = - 1 only for m - 1 and 
only for rings or cylinders where axial displacements are zero; 
i.e., u = 0. 

It is clear now why the effect of precession of modes of the 
rotating solid body was ignored for many years. First, this ef
fect is rather small for low speeds of rotation and, secondly, it 
could not be discovered using a one-dimensional model. This 
effect only appears in two- or three-dimensional models. 
Finally, this phenomenon does not appear in axisymmetric 
vibrations. Indeed, it is known that axisymmetric vibrations 
may be separated into twisting modes with amplitude vector 
Uj = (0, v, 0) and longitudinal-bending modes with amplitude 
vector U2 = («, 0, w). It is clear that the scalar products 
(Z-cUi, U,) and (LC\J2, U2) and the coefficient of bifurcation 
i8 = 0 are all equal to zero. 

The effect of precession is well known in physics and is a 
consequence of the theorem of conservation of angular 
momentum. In all cases, when an arbitrary body oscillates in a 
field of gyroscopic forces F, such that 

F = a x V , 

where a is a field vector and V is the speed of a body element, 
we have the precession of a mode. The effect of bifuration of 
the frequencies for an oscillation of a particle in a field of 
magnetic forces is known as Larmore precession. Another ex
ample of this effect is the vibration of the Foucault pendulum. 

To determine the strain energy density n we have to choose 
the shell theory. We will use the Novozhilov's theory. Smirnov 
and Tovstik (1981) and Smirnov (1981a, 1981b) have shown 
that for Novozhilov's shell theory the expresssions for items 
proportional to Q2 in equation (14) have the next form 

n0(U0) + P n P ( U 0 ) = n n ( U 0 ) - O 2 r e ( U 0 ) , U0 = m2T-2mTc. 

(24) 

Constant P depends on the boundary conditions and not equal 
to zero only when both edges are clamped, i.e., u(st) = u(s2) 
= 0. We will not consider this case. 

If P is equal to zero, the formulas for the shift coefficients 
will be rewritten as: 

a = - — (m + fil)
2Q2(l + 0(Q2)), (25) 

2co0 

If we assume U = U0 , and submit the expression (24) into 
(14), we immediately obtain 

u±=/S1fl±(a>0 + (w + /S1)2fl2)!\ (26) 

The last expression is more precise for lower eigenvalues, but 
from an asymptotic point of view the relative error will be the 
same as in formula (25), that is O(02). 

6 Partition Method 

Most of the results of Sections 3, 4, and 5 are valid for an 
arbitrary elastic body, rotating around an axis of symmetry. 
For example, for any elastic body 

(3=Tc(Vo) Q(l + 0(fl2), 
T(U0) 

describes the gyroscopic effect, where U0 is the vector of 
displacements for a nonrotating body. We will omit the 
index 0. 

Now we will use the specific property of the shell, small 
thickness h, to find the approximate analytical expression for 
the modes of a nonrotating shell. For the quantities of the 
same order as h, we will use the symbol ~ . If we manage to 
construct the modes in the form 

U = U° + U ' , HU'll~/iollU0ll,a>0> 

we then get an approximation for the coefficient /3 in a form 

T(\]°) 
P = T /TTOI W + 0(Q2) + 0(h")). 

The solution U° is usually called the general solution and U1 is 
called the additional solution. If h is a small parameter, it is 
possible to represent the modes as a power series in h. The 
character of both the general and additional solutions and, 
hence, the actual form of the series depends on the frequency, 
geometry of the shell, boundary conditions, and value of the 
wave number m. For example, the general solution of the 
equations of vibration with lower frequency is often the 
bending mode and the additional solution has the character of 
a boundary effect. The main results of the theory of asymp
totic integration of the equations of vibration of shells can be 
found in a monograph (Goldenveiser et al., 1979). In the next 
sections we will use the results of this work. 

7 Rayleigh's Vibrations 

From a technical point of view, the quality of a structure is 
often determined by the lower eigenvalues. In this paper we 
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are interested in the lower part of the spectrum of the frequen
cies of free vibration. Among the lower frequencies we are 
mostly interested in superlow frequencies. These frequencies 
are of the order of ha, where a > 0 and, hence, decrease as the 
thickness decreases. If the thickness is small enough, all lower 
frequencies are superlow, if they exist. In a paper by Smirnov 
and Tovstik (1982), it was shown that the maximum effect of 
the rotation is on these frequencies. The results of numerical 
investigations proving this conclusion can be found in a paper 
by Shih-sen Wang and Chen Yu (1974). 

Let us consider the Rayleigh formula for frequencies 

2 ne(U)+/*2nx(U) 
0) = . 

T(U) 
Here IIe is the elongation-shear energy and IIX is the bending-
twisting energy. 

It is clear that the eigenvalues are superlow if we consider 
the modes for which the potential energy of the elongation 
(membrane energy) is small, i.e., 

The limiting case II, = 0, represents pure bending modes. 
These modes have been investigated by Lord Rayleigh. 

The condition IIe = 0 is equivalent to the system of equa
tions 

or, using the definition for the tangential deformations 
(Goldenveizer, 1961), to a system of differential equations 

Vf 

R, 
= 0, 

B'u 
B +~ 

B(^ 

mv 
B 
r 

\ -

w 
R2 

mu 
, 5 , B 

= 0, 

= 0. (27) 

This system has two solutions which may be found for any 
given shell type. 

8 Shells of Zero Curvature 

In this section we will consider shells of zero curvature, i.e., 
cones and cylinders. For cones the radii of curvature and func
tion B can be determined from: 

1 

~R~, 

1 cosa 
= 0, - = - = -R, B 

B = s sin a, B' =sin a, 
M " 2 

where a is the cone semi-angle. The case a = 0 represents 
cylinder. 

For a cone, the system of equations (27) has the solutions 

U, = ( o , s , - ^ - ) , U 2 = ( i 
V cosa / V 

s i n a , - m , ), (28) 

cosa / v cosa / 

and for a cylinder the system of equations (27) has the solution 

U, = ( 0 , 1 , / M ) , V2 = (\,ms,m2s). (29) 
It is possible to show that the first mode is symmetric to the 
middle of the shell and the second mode is in an antisymmetric 
mode. The frequency corresponding to the first mode is 
always lower than the frequency corresponding to the second 
mode. 

Now, if we have a boundary condition, which allows the ex
istence of pure bending, the formulas (28) and (29) give us an 
approximation for the exact modes. The error of this approx
imation is proportional to the influence of boundary effects, 
that is, O(Vh). 

We substitute the modes (28) and (29) into (21) and (26). For 
the cone we get 

co±=/31fl±(fi§ + (/w-|31
2),/S 

where, for the first mode 

2/??cos2a 

(30) 

0,= cos2a + m2 

and for the second mode 

2w3 • , / s in 2a — m 2 \ 2 

0 , = — , A„, = sm2a + /M2+ I 1 . 
Am \ cosa / 

Here, coo ' s the eigenvalue of the nonrotating shell. 
For the first mode of the cylinder we get 

2m l . , / m 2 - l \ 2 „ , \ B 

(31) 

For the second mode we may use the same expression, but 
with an error of the order 0(m~2l~2). 

If m is a large parameter, the formulas for the first and 
second modes converge and we obtain the next approximation 

2cos fy 
0, = ^ - ^ (1 +0(m-2)), co± = /3,G± (u>l + m2n2yA. 

(32) 

All these results are valid for pure bending vibration, but 
not all shells and boundary conditions produce pure bending. 
For some cases, the shell has modes very similar to bending 
modes. These modes are called pseudobending modes. The 
reader can find theoretical results about pseudobending modes 
in a monograph by Goldenveiser et al. (1979). 

We will consider only two cases of vibration of shells with 
zero curvature, where pseudobending modes exist. The first is 
the vibration of a shell of medium length, i.e., l~R. It was 
shown (Goldenveiser et al., 1979) that for the medium length 
shells of zero curvature, pseudobending modes exist for any 
type of the boundary condition. For these modes the wave 
number is large (m~h~'A) and the lowest frequency is of the 
order of tiA. To determine the frequencies of vibrations of 
these modes, we can use the formula (32). The error of this 
formula increases when we consider large or small values of 
m. The error will rise if we consider a rigid boundary condi
tion. For example, this formula gives better results for simply-
supported edges than for clamped edges. Nevertheless, (32) 
gives a good approximation for low frequencies. Figure 2 
compare the eigenvalues of a cylindrical shell determined by 
numerical method (points on the graph) by using (32) (lines on 
the graph) for m = 5, / = 2, h = 0.01. Endo et al. (1984) and 
Saito and Endo (1986) obtained good agreement between 
numerical, experimental, and theoretical results for a wide 
range of parameters of thickness and wave number, and 
various boundary conditions. 

The influence of rotation on the eigenvalues, determined 
with formula (32), does not depend on the boundary condi
tion. Using the asymptotic representation found by 
Goldenveiser et al. (1979), it is possible to get the next term in 
the series for the eigenvalue, taking into account the effect of 
the boundary condition. For a cylinder, Goldenveiser et al. 
(1979) have found that the first term for the displacement has 
the form 

U ° = ( — r ( w 0 ) ' , w°, w°Vl + O(v70), (33) 

V m1 m / 

where w° is a solution of the equation 

(1 - y2)(w0)'" +(msh2- (4mA)wa = 0. 
For the simply-supported edges, the corresponding boundary 
conditions are 
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LOWER FREQUENCIES OF A SHORT CYLINDER 

SPEED 0F R0TBTI0N 

Fig. 2 The lower eigenvalues versus speed of rotation for a short cylin
drical shell 
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Fig. 3 The lower eigenvalues versus speed of rotation for a long shell 

(w°)"(0) = w°(0) = (w0)" (/) =w°(D =0. 

It is clear that if m is a large parameter, for example, 
{m~h~v'), equation (32) is still valid. The error due to ne
glecting terms of the order of m~2, is of the same order as that 
due to neglecting the boundary effect. If m is not large; we 
must use the more precise formula. 

The second case we will consider is long cylindrical shells. It 
was shown that for the sufficiently long shells for each wave 
number, m pseudobending modes exist. In this case, the error 
in frequency due to (32) is proportional to m~2l~2. Egarmin 
(1986), did not require the assumption ej = 0. It allowed him 
to obtain the next term in the expression for the coefficient of 
bifurcation 

2m 

m2 + l+Dk-

(34) 

m2l2 

where coefficient Dk depends on the boundary conditions and 
the wave number (k) in the direction of the meridian. Dk in
creases with k, so the influence of the boundary condition in
creases for higher modes. The coefficient Dk is larger for more 
rigid boundary conditions. 

The same result can be obtained using (33). For example, 
for a simply-supported shell, 

U°=(-
irk 

Im2' 
•wks 

m 
sin 

irks 
sin 

irks\ 

and the coefficient of bifurcation is equal to: 

2m 

m2+\+-
m2l2 

In this case, Dk = ir2k2. For higher modes we must use (34), 
but for the case k = 1 and for long shells, (32) provides ade
quate results. 

The influence of rotation is maximum for m - 1. This is the 
only case when the eigenvalue may be equal to zero for some 
rotation speed. For a long cylinder with m = 1, (34) 
transforms into 

• 0 , -wo- fin (35) 

The comparison of the numerical (points on the graph) and 
asymptotic (lines on the graph) results for the lower frequen
cies of the long cylinder can be seen in Fig. 3 for the following 
parameters m = 1, h = 0.01, and / = 15. 

We see that for certain specific values of the speed of rota

tion, the eigenvalue is equal to zero and the shell becomes 
unstable. The behavior of a long shell is thus similar to the 
behavior of a long beam, which also becomes unstable at 
critical speeds of rotation. 

9 Vibrations of Spherical Shells 

In this section we will consider the vibration of spherical 
cupolas, which were first examined by Zhuravliev and Klimov 
(1985). The geometry of these shells is described by function B 
= sin 6, 0 < d < 62, Ri = R2 = 1- We start by investigating 
pure bending modes of vibration. Rayleigh has solved the 
system (27) for a spherical shell. There are two solutions. We 
consider the one which is limited in the top of the cupola: 

/ / 6 \"< / 6 \"' 
U = (smflltan— 1 , smflltan— 1 , 

(w + cos0)( tan—) Y O<0<0 2 . (36) 

Now if we substitute this solution into (21) and (26), we get 
the formulas for the coefficients of bifurcation and shift 

co±=|8 ln±(o)0 + (w + /31)2fi2)1/2, 

where 

— rnc z 

-2m 
P-+P +/4 (37) 

q = cos 2' 

7^=4 ( i - t )
m + ! t l ~ m d t , 4 = ( m - 1 ) 2 (l-t)'"t-mdt 

/2 = 4(w + l)f (l-t)mtl-mdt, 4 = - 4 f (l-t)'"t2 

Jo J<7 
"dt. 

For each value of m we can compute these integrals. For 
m = 2, the value of the coefficient of bifurcation has been 
determined by Egarmin (1986). In our notation 

Pl=~2r 
241ng - 72q + 36g2 - 8g3 + 44 

3^- 1-301n^ + 8 1 9 - 3 0 ^ 2 + 4 ^ 3 - 5 8 ' 
(38) 

It is interesting to investigate the value of the coefficient of 
bifurcation as a function of the angle 62, which is a coordinate 
of the free edge of the spherical shell. In Fig. 4 we can see the 
value of the modulus of the coefficient of bifurcation as a 
function of the angle d2. The maximum 08, =0.76) cor
responds to a cupola with an angle of 135 deg. It is interesting 
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COEFFICIENT OF BIFURCATION FOR A SPHERE 

SPHERICRL ANGLE 

Fig. 4 The relationship between the coefficient of bifurcation and the 
spherical angle for a spherical shell 

to compare the results for the sphere with the results for the 
cylinder. For m = 2, the maximum value of the modulus of the 
coefficient of bifurcation for cylindrical shell, according to 
(34), is 0.8. Since the influence of rotation on the shells of dif
ferent geometry is maximal for cylinders, the last number is an 
upper limit for the coefficient of bifurication of a spherical 
shell. In the case of a spherical shell, the bifurcation will be' 
more for the shell, which is more "similar" to the cylinder. 

For a hemisphere (02 = T / 2 ) with m = 2, we obtain 
(3, = -0.554 and the speed of precession p/m= -0.227. This 
result was first obtained by Zhuravliev and Klimov (1985). 
Evaluating the limit of expression (38) for 62 converging to 0 
and to T, it is not difficult to show that £, converges to zero. 

The comparison of the numerical (points on the graph) and 
asymptotic (lines on the graph) results for the lowest frequen
cy of the hemisphere with free edge can be seen in Fig. 5 for 
the following parameters m = 2, /j = 0.01. The frequency for 
the nonrotational shell is assumed to be equal to 1. 

These results are valid for spheres with a clamped top and 
free edge. The error in the mode and, hence, for frequencies is 
determined by the boundary effect and is O(V^). For other 
boundary conditions at the top, or if 0, >0, the error in using 
(36) increases. Egarmin (1986) estimated the influence of the 
boundary conditions on the eigenvalues. He has shown that 
this effect is much less important than the effect of the in
fluence of the free edge. This seems reasonable since the main 
vibration for these shells is concentrated at the free edge. 
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An Energy Approach to Anomalous 
Damped Elastic-Plastic Response 
to Short Pulse Loading 
In beams with full-end constraints, loaded transversely by short pressure pulses, the 
effect of extensional plastic deformation is to make possible instabilities related to 
snap buckling in the elastic-plastic recovery after the first peak displacement 
(Symonds and Yu, 1985). In the present paper we make use of a damped, Shanley-
type model to study the calculation of the final displacement, reached asymptotical
ly. We show that plots of the elastic strain energy and of the total energy as func
tions of the displacement help to guide thinking. They provide clarification of 
previously observed phenomena (Genna and Symonds, 1988) that appear complex 
at small damping, and lead to lower and upper bounds on the load parameter such 
that anomalous responses are observed. The response is calculable with the usual ac
curacy in problems where bifurcations are concerned. 

1 Introduction 

A single degree-of-freedom beam model of Shanley type is 
used here for further study of the nonlinear elastic-plastic 
response of a structure to a short pulse of transverse loading. 
The model (Fig. 1) consists of two rigid bars connected to each 
other by a deformable cell, and to rigid supports by smooth 
pins. This model has been shown to capture the essential 
features of the elastic-plastic response of pulse-loaded fully-
constrained beams (Symonds and Yu, 1985; Symonds et al., 
1986; Genna and Symonds, 1987). It serves as an efficient 
device for studying the instabilities that may occur because of 
the transformation of the beam into a shallow arch by the 
plastic deformations in the first deflection swing. The 
response following the first peak may thus involve anomalous 
behaviors and difficulties in numerical computation. 

The present work is a continuation of work relating to the 
damped system by Genna and Symonds (1988) in which it was 
shown, that in certain ranges of the parameters, the final 
displacement alternates in a discontinuous manner between 
positive and negative values, when plotted as function of the 
pulse strength. 

The loss of energy in plastic deformation and damping, 
together with the associated changes in geometry of the struc-
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ture, are basic features in these phenomena. Considerable in
sight is provided by a new type of energy plot, involving both 
the total energy of the system and the elastic strain energy, as 
functions of the displacement. These help in understanding 
the interplay between energy and geometry changes, and their 
dependence on the pulse-loading magnitude. 

A main purpose of the paper is to discuss how these 
energetic quantities control the approach to the final state. 
Damping, of course, is an essential property in these con
siderations. The final response is critically altered by the in
troduction of damping. As mentioned in appropriate cir
cumstances, as the load parameter is increased, the final 
displacement has alternately positive and negative signs in suc
cessive intervals. For moderately small values of the damping 
ratio, the final displacement is calculable to any desired ac
curacy inside each such interval of the load parameter. 

According to Poddar et al. (1988), chaotic behavior is 
observed when the model is subjected to periodic loading. This 
is not foreshadowed by a fractal dimension of the boundary 
between attracting basins in the present case, where the struc
ture is free of external excitation following the short pulse of 
loading. However, if the damping ratio is taken vanishingly 
small (but nonzero), the situation becomes one where the final 
state is unpredictable mathematically (this is apart from the 
obvious difficulty or impossibility of predicting the final state 
of a physical system). 

The present energy approach provides a guide in studies 
now being pursued of the more complex responses of the pro
totype beams with fixed pin or fully-fixed end conditions 
(Symonds and Yu, 1985; Symonds et al., 1986; Segev, 1986; 
Yankelevsky, 1987). 

Basic Relations 

The system is illustrated in Fig. 1. The deformable cell of 
negligible length that connects the two rigid rods is conceived 

430/Vol. 56, JUNE 1989 Transactions of the ASME 

Copyright © 1998 by ASME
Copyright © 1989 by ASME

  Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t- -4 

(a) (b) 

3> 
the area of each bar of the cell, and c is a coefficient of viscous 

TAcr damping. Taking the expressions for s, and s2 from equation 
sA CT (4), the equation of motion in terms of <$> and the plastic strains 

is 

(C) (d) 
Fig. 1 The Shanley model, (a) indicates rigid bars attached by pins to 
rigid supports, (b) shows deformable cell with notation for stresses; M, 
N are bending moment and axial force exerted by cell, (c) shows nota
tion for displacement angle 0; peak displacement due to short pulse 
load is 4>o, taken as loading parameter, (d) shows elastic-perfectly 
plastic behavior assumed for each bar. 

as consisting of two equal elastic-perfectly-plastic bars at 
distances ± h/2 from the centerline. The angle of rotation <j> 
serves as measure of displacement. The strain in each bar is 
defined as the ratio of its elongation to the length / of the rigid 
rods. Accordingly, for small rotations, 4>, the strain in
crements de\ and de2 due to an increment d(f> are 

£fc, = (d. + -5-)dd>; de2=($ —j-)d$, (1) 

where rj = h/l and the subscripts 1 and 2 refer to the upper and 
lower bar, respectively. We can express the strain increments 
in terms of elastic and plastic increments as follows: 

Gfe,=G?ef + tfef = — + rfef; de2 = dee
2 + de2

, = — + de2', (2) 

where S\ = o\/aa, s2 = o2/aQ; CTJ and a2 are stresses in the upper 
and lower bars, respectively, a0 ' s t n e yield u m i t and ix = E/a0, 
E being a Young's modulus. Integrating, the plastic strains 
may be computed as the difference between total and elastic 
strains, as follows: 

2 ix 2 
r ) 4 > ) - — . 

A* 
(3) 

Alternatively, the stresses may be expressed as 

5 , = / x ( — < ^ , 2 + — ^ 0 - e f ) ; S2 = H(-Y4>2--j~#-«?), (4) 

(both forms will be used). Finally, the yield and consistency 
conditions are 

Is,I s i ; 
(s,±l)ef>0; 

s,if = 0, 

i=l,2 

(5) 

(no summation over i); an overhead dot denotes the time 
derivative. 

The basic equation of motion is the equation for the angular 
acceleration of each bar. In terms of nondimensional stresses 
this takes the form 

J4> + st (* + -%-) + f f 2 ( * — J " ) +c^=f' (6) 

where f=P/Ao0, P(t) being the external force acting on the 
model; J=2ml/?iAo0, m is the mass of each rigid rod, A/2 is 

=/+11 (* + ~y) «f + /* (« — Y ) $ • (7) 

This expresses the damping in terms of the ratio £=c/cc, 
cc = (2Jixrj2)wl being the critical damping coefficient for small 
deflections of the elastic system. 

From equation (7) it appears that four parameters must be 
specified in order to define the problem, namely J, p, r/, and f. 
(Yu and Xu (1988) have recently considered the undamped 
case, and showed that in addition to 7, there is then only one 
independent structural parameter, which is proportional to 
ixi}1). For consistency with earlier work, we adopt the follow
ing values: 

7=6x l0~ 8 sec 2 ; ?; = 0.0271; ^ = 400. (8) 

The model permits the simplification for short pulses of tak
ing the peak deflection due to the pulse as a measure of the 
pulse strength. The motion can be assumed to start from a 
configuration specified by an initial rotation <j>0 and zero 
velocity. The system is assumed to have attained this initial 
state along a monotonic deformation path so that the stresses 
(s{ , S2) and plastic strains (effl, ^ ) are unambiguously 
associated with each value of <j>0. 

When the system is released from the initial position, its 
recovery behavior is initially elastic. However, in the following 
motion either one or both bars may undergo further plastic 
deformation. It is helpful to write work-energy integrals. We 
start by multiplying equation (6) by d<$>. The incremental form 
can be written as 

d(Jp/2) + 5, (<A + -|-)d<t> + s2(<j>--|-)d<t> + $cc4>d<fr = 0, (9) 

the right-hand side being zero in the recovery motion. In view 
of equations (1) and (2), this can be written as 

d(J4>2/2) + s, ( — + tfef) + s2 (-^- + de£\ + Scc4>d<{> = 0. (10) 

Integrating between limits <f>0 and <$> and rearranging, we ob
tain 

\ (51rfef + 52c?ef)-rcc \ j>d<t>, (i i) 

where s{ , s2 are the stresses at the start of the recovery (i.e., 
those associated with monotonic loading to the initial angle 
<£0). We rewrite this as 

T+V=U=V0-Dp -A, 
where: 

1 1 
—2-A"?(ef - ei)<t> + - y M e f 2 + e f ) ; 

n = ̂ 2
0 +^ 0 )=K(<A 0 ) ; 

(12) 

(13a) 

(136) 

(13c) 
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Fig. 2 Characteristic diagram for damping ratio f = 0.1. (b) shows cen
tral portion to enlarged scale. Solid line is final rest displacement; 
dashed curves show envelope of continuing elastic vibration for the un
damped case (j~=0). 
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T is the kinetic energy, V and F0 are the current and initial 
elastic strain (or complementary) energies, respectively, com
puted from the stresses, and [/is the total energy of the system 
(kinetic energy plus strain energy). Kis a function of </> and the 
history-dependent plastic strains ef, ef. For brevity we shall 
usually write V(<j>) in place of F(c/>; ef, ef). Similarly, we omit 
explicit expression of the history-dependent parameters of 
U(4>). U decreases by the amount of the plastic dissipation 
Dp I $ plus the energy lost in viscous damping Dv I $ . We shall 
refer to U as the total available energy. Its initial value is V0, 
strain energy of the system assumed initially at rest. For con
stant ef, ef, equation (7) is a form of Duffing equation. 

In the damped system, the terms in equation (11) can be 
evaluated only by a numerical integration furnishing the time 
histories c/>(r), ef (0. etc. When damping is omitted and the ex
ternal loads are independent of time, they are obtainable 
directly from the first integral with respect to displacement 
angle. We are here interested especially in the effects of damp
ing, and the energy plots discussed in what follows were com

puted by a step-by-step integration scheme based on central 
differences. 

3 Energy Plots and Their Interpretation 

Previous calculations for the undamped model (Symonds 
and Yu, 1985; Genna and Symonds, 1987; Yu and Xu, 1988) 
have led to plots of characteristic diagrams (CD's) which show 
the envelope of the final elastic vibration as a function of the 
initial angle 4>0. Calculations with damping furnish the final 
asymptotic displacement angle, and the CD's showing this as a 
function of </>0, reveal striking differences from the undamped 
case (Genna and Symonds, 1988). Figures 2 and 5 present ex
amples for damping ratio f=0.1 and 0.01, respectively; the 
envelope curves for the undamped model (dashed lines) are 
also shown for comparison. 

Referring to Fig. 2, there are seen to be two slots—i.e., 
regions of <£0 in which the final angle is negative—bounded by 
discontinuous jumps from a positive to negative value or vice 
versa. But for the smaller value f=0.01, Fig. 5 shows a more 
complex diagram, with 25 slots. In both cases, in the central 
region of the diagram the final angle computed for the 
damped model appears to be virtually unrelated to the 
envelope curves of the undamped system. Thus, the response 
calculations for the undamped case are incapable of predicting 
even the sign of the final displacement of the damped system, 
in the central region of the diagram. The energy diagrams 
discussed in this paper do help greatly in understanding this 
rather surprising situation. We will focus attention first on the 
somewhat simpler case of £"=0.1, and then treat more briefly 
the case of f= 0.01. 

To begin with, suppose that c/>0 is so small that no plastic 
strains develop during the loading phase. Then the recovery 
motion is that of an elastic beam subjected to a small initial 
displacement. The recovery process is illustrated in Fig. 3. The 
dashed curve represents the variation of U with </> while the 
solid line refers to the elastic strain energy V. Since part of the 
energy is dissipated because of the damping effect, the energy 
balance (12) implies that the total available energy decreases. 
For each value of c/>, the difference between the dashed and the 
solid curves gives the kinetic energy. Since the recovery in this 
example is completely elastic, the shape of the elastic strain 
energy curve does not change as the motion progresses. The 
upper and lower limits of successive cycles are marked as C, 
B', C", B", etc. The final asymptotic configuration of static 
equilibrium (4>E ) coincides with the minimum of V. 

Turning now to the case of elastic-plastic recovery, the 
energy plots of the type of Fig. 3 are, of course, somewhat 
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more complicated. First of all, U decreases now because of 
plastic dissipation as well as damping. Secondly, the develop
ment of plastic strains during the recovery changes the shape 
of V in the V-<j> diagram. A sequence of energy plots cor
responding to different values of </>0 and to a damping ratio 
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Fig. 4 Energy diagrams for damping ratio f = 0.1 for range of values of 
pulse load parameter $0 such that plastic deformation occurs in the first 
half-cycle of the recovery motion following the peak displacement due 
to the load pulse. Full lines show elastic energy V. Dashed lines show 
total available energy If. Kinetic energy T = U-V. 
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Fig. 5 Characteristic diagram for damping ratio f = 0.01. (b) shows cen
tral portion to enlarged scale. Solid line is final rest displacement; 
dashed curves show envelope of continuing elastic vibration of un
damped system (? = 0). 

£"=0.1, is shown in Figs. 4(a)-(f). Before discussing these 
separately, it is worth pointing out some common features. All 
the diagrams of Fig. 4 refer to an initial situation where at 
least one of the two bars has yielded in tension. When the 
minimum peak is reached at the end of the first semicycle of 
recovery (<j> = 4>B), at most one bar is yielding plastically, 
namely either the lower bar in tension, Figs. 4(a), (b), (c), or 
the upper bar in compression Fig. 4(f). Finally, in the recovery 
phase energy is dissipated plastically only during the first 
semicycle; this is found in all our calculations, but not proved 
in general terms. 

Let us focus now on Figs. 4(a) and 4(b). As always, the 
dashed line represents U and the solid line V; their difference 
is the kinetic energy T. When the system is released, the mo
tion proceeds from c/>0 to <j>Al. At 4> = <t>A2>

 t n e stress in the 
lower bar reaches its tensile yield value; and from </>A to<j>B, U 
undergoes a brusque decrease due to the plastic dissipation. As 
far as V is concerned, the development of new plastic strains 
can be interpreted as a change in the geometry of the structure. 
In other words, if the plastic strains are considered as disloca
tions imposed on the structure, it can be regarded as an elastic 
system changing its shape under the effect of these disloca
tions. We can associate to each pair of plastic strains a par
ticular elastic system endowed with its proper elastic strain 
energy function. Thus, the two curves from <j>0 to 4>A^ and 
from 4>B to 4>c can be considered as relevant to two elastic 
systems with different morphology. The curve between </>, 
and <j)B represents the transition from the first system to the 
second one. V has two local minima between <j>B and 0C, so 
that two possible final equilibrium configurations exist. At 
this point it is impossible to foresee, on the basis only of the 
shape of V, whether the final displacement will be on the 
positive or on the negative side. An example of this is given in 
Figs. 4(a) and 4(b) where a relatively small change in </>0 pro
duces a dramatic change in the final state. 

By following the same path of reasoning, the interpretation 
of the remaining diagrams is rather straightforward. While in 
Figs. 4(a) and 4(b) the plastic dissipation during the recovery 
occurred near the end of the first semicycle (from 4>A to <j>B), 
in Fig. 4(c) the plastic dissipation occurs partly near the flat 
position when the upper bar yields in compression and partly 
at the end of the first semicycle when the lower bar yields in 
tension. Figures 4(d), (e) refer to a case where all the plastic 
dissipation is due to the compression of the upper bar. The 
first of these diagrams represents a case where the asymptotic 
configuration is positive whereas the second one gives another 
example of final counter-intuitive behavior. 

It is worth observing that the unstable stationary point of V 
in the second semicycle (point 4>E in Fig. 4(a)) rises as <f>0 in
creases due to a greater initial plastic deformation in tension. 
This trend reverses as the upper bar starts to become plastic in 
compression during the recovery phase, e.g., as indicated in 
Figs. 4(d),(e). If the initial angle </>0 is such that both bars are 
plastic in tension in the initial configuration, the initial value 
V0 cannot increase further, while the energy dissipated during 
the recovery does continue to grow. This leads to a situation 
where no bifurcation is possible, as illustrated in Fig. 4(f). 
This remark, among other considerations of the just described 
energy diagrams, suggests how to define necessary conditions 
for the occurrence of bifurcations and, consequently, to 
bound the range of initial values 4>0 such that a counter
intuitive behavior is possible; see Section 4. 

We turn first to discuss the effects of changing the damping 
coefficient. The situation for relatively small damping is 
especially interesting, and we shall give illustrations for the 
case of f = 0.01. However, let us begin by reviewing the role of 
damping in general, in the light of the energetic diagrams 
previously discussed. 

These make it clear that there are two distinct consequences 
of damping. One is merely to provide a means of reducing the 
total energy so as to bring the system to an equilibrium state. 
When the final curve of the elastic strain energy V(4>) has a 
hump (i.e., an unstable equilibrium point between two stable 
ones) as in Figs. 4(a)-(b), the energy loss due to damping 
causes the total energy U(<j>) to zig-zag down, initially between 
alternately ( + ) and ( - ) limits and, finally, between either 
( + )-( + ) or ( - ) - ( - ) limits, depending on whether its intersec
tion with the V(4>) curve is on the right or on the left side of the 
hump. As the load parameter <pQ is increased, the hump is 
raised and the intersection of the two curves changes from one 
side to the other. Thus, the final equilibrium state alternates 
between positive and negative values. 

The second role of damping is to change the shape of the 
final V(4>) curve. This curve represents the quartic function of 
(j> whose coefficients depend on ef and ef, as shown explicitly 
in equation (13b); for the final V(<j>) curve, of course, these 
plastic strains are both constant. Now, as already mentioned, 
plastic flow may be occurring in either the upper bar or the 
lower bar, as the minimum displacement is approached in the 
first half-cycle of the recovery. In either case, if damping is 
present the plastic strain is reduced below what it would be in 
its absence—a consequence of the loss of energy in damping as 
well as in plastic flow. 

With these preliminaries in mind, the effect of changing the 
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damping ratio f can be easily understood. When f is relatively 
small, the effect of damping on the plastic strains is reduced, 
and the shape of the K(</>) curve in the limit approaches that of 
the undamped system. The presence of damping, of course, 
always brings the structure to rest at a stable equilibrium 
point, i.e., at a point where the V($) curve has a local 
minimum. In the range of loading where there are two distinct 
minima, the decrease in the available energy due to damping 
leads to a change from an initial vibration with ( + ) - ( - ) limits 
to one with either ( + )-( + ) or a ( - ) - ( - ) limits. As the damp
ing coefficient decreases, so does the damping loss per cycle, 
and many cycles may be necessary to reach the bifurcation 
point. Thus the final displacement, plotted as function of the 
load parameter, correspondingly will alternate in sign with in
creasing rapidity as f is reduced. 

In Fig. 6 we give examples of energy diagrams for f =0.01. 
These show why the characteristic diagram changes as it does 
from Fig. 2 to Fig. 5. Figures 6(a), (b) illustrate the reason for 
the proliferation of narrow slots as f is decreased. Figures 6(c), 
(d) illustrate why, when f becomes sufficiently small, the 
features of the CD of the undamped system reappear in the 
damped final response curve of Fig. 5. Note that in the un
damped case there is a wide interval of c/>0 (between about 
0.085 and 0.093), within which the motion is trapped on the 
negative side. Here, small changes in </>0 produce only small 

changes in the response. Such a wide slot is seen in the solid 
curve of Fig. 5 for f =0.01. To have it in a damped system re
quires a quite small value of the damping ratio; thus, there is 
no trace of the slot in Fig. 2 for f = 0.1, nor is there in the 
curve for f=0.05 (see Genna and Symonds, (1988)). 

These results are of practical significance. They indicate 
that to observe the anomalous negative final displacements in 
real physical beams, where damping losses may be of several 
kinds and unlikely to be equivalent to as small a value as 
£"=0.01, calculations for the undamped system may be 
worthless as a guide. 

4 Upper and Lower Bounds for the Occurrence of 
Counter-Intuitive Behavior 

In the presence of damping, values of 4>0 at which discon
tinuities occur in the CD cannot be computed except by a step-
by-step numerical procedure. However, by defining the 
necessary conditions for a counter-intuitive behavior to occur 
in the undamped system, it is possible to bound from above 
and below the interval on the 4>0 axis where these discon
tinuities may arise. 

For small values of c/>0 (Fig. 3), the recovery is completely 
elastic and V is described by a convex function in the V-4> 
plane. The minimum, at <j>E , represents the only possible 
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equilibrium configuration, and is attained asymptotically by 
the damped system. For a larger value of c/>0 (e.g., Fig. 4(a)), 
there are three possible asymptotic equilibrium states: two 
stable and one unstable, at least one of which is on the 
negative side. In this case there are always combinations of 0O 
and f such that the final configuration is counter-intuitive. 
The lower bound for the possible occurrence of counter
intuitive behavior is, therefore, given by that value of 0O such 
that for the first time more than one equilibrium state is possi
ble (Fig. 7(a)). Equilibrium configurations can be obtained 
from the equation of motion (7) when 0 is set equal to zero. 
Let ef and effl be the plastic strains in the two bars at the end 
of the first swing (0 = 0B). Since no plastic dissipation takes 
place in the subsequent motion, the equilibrium configura
tions are solutions to 

—/«J 2* + M*3=/*(* + - J - ) e ? f l + * * ( * — Y ) < Z B > <14> 

where ef„ and ef play the role of assigned parameters. We 
assume that the sought lower bound belongs to a range of in
itial values c/>0 such that only the upper bar becomes plastic in 
tension during the loading phase, and such that neither bar 
becomes plastic in compression during the recovery motion. 
This assumption turns out to be valid for the values of rj and p 
used here, but might not hold true for other systems, 
characterized by different choices. If the just described history 
of deformation is considered, the plastic strains accumulated 

in the two bars at the end of the first swing can be expressed as 

efB=^-(</>o+^o) ! 

3» 
1 , 1 

-Z-(4>B-V4>B) 

(15) 

Substituting these expressions in (14) and rearranging, yields 

1 / „ . , . . , . 4 - 1 / 4 \ 
CO </,3+ — U 2 - < / > § - I J ^ o - c / . ! - 1 J 0 B + 10 
fi 2 V /i / 

+ -T~n( ~ 00 - # 0 + 023- Vt>B) = °- (16) 

This is a cubic equation in 0 of the type 
x3 +alx + a2 = 0. (17) 

The condition for the existence of three real roots, at least two 
of which are coincident, is given by 

1 , l 

Equation (18), when applied to (16), leads to the following 
condition on 0O and <j>B 

1 r 4 1 3 

— [r/2 - (0g + r/0o) - ( 0 ! - r/0B) + J 

ra? + — a 2 = 0. (18) 

+ -H(0i-'Z0B)-(02 , + ')0o)]2 = O. (19) 

The two variables 0O and <f>B in (19) are not independent: 4>B 
is a function of 0O through the elastic-plastic history of the 
motion, and for the undamped system it can be determined by 
noticing that, at 0 = 0B, the kinetic energy vanishes. Hence, 
the sum of V at 4>B and of the energy plastically dissipated 
along the path between 0O and 4>B must be equal to V0, i.e., 

F(0;efB,effl)+Dp = KO(0O). (20) 

The fact that equation (20) refers to the undamped case is here 
acceptable, inasmuch as we are interested only in finding a 
lower bound. It is easy to verify that the lower bound for the 
undamped case is also a lower bound for the damped one. If 
the history of plastic deformation is as decribed, and the 
plastic strains given by equations (15) are substituted in the ex
pressions (136), (13d), (13c) for V, Dp, and V0, respectively, 
equation (20) can be written explicitly as 

[-*-[• (0! + r/0i()-(0§ + rj0o) + -
1 

2^7 

+ [ -^- (0 | -#B)—~] = Hr«>°-^o)2+^]- (21) 

Equations (19) and (21) are a system of two nonlinear equa
tions in the unknowns 0O and 0fi. The value of 0O, which is a 
solution to this system, is the lower bound we are seeking. 
Taking r/ and /x as in equation (8), the following solution is ob
tained by applying a Newton-Raphson iterative procedure: 

00 = 0.0659546; 0fl=-0.0621585. (22) 

To obtain an upper bound, let us now focus on Fig. 4(f). 
This figure refers to a case where both bars become plastic in 
tension during the loading phase and the upper bar becomes 
plastic in compression during the first recovery swing. The 
energy dissipated plastically in this second instance is such that 
the system does not have enough energy left to reach a stable 
equilibrium configuration on the negative side. As a result, 
again, there exists only one possible equilibrium configura
tion. If the system is damped, the further dissipation makes 
this situation arise at a value of 0O, which is necessarily smaller 
than the value for the undamped case. Therefore, we define as 

436/Vol. 56, JUNE 1989 Transact ions of the A S M E 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



upper bound for the occurrence of counter-intuitive behavior 
that value of </>0 such that for the first time, the second 
minimum cannot be attained by the undamped system (Fig. 
1(b)). This value of <j>0 is expressed by the condition that the 
point 4>B, where the kinetic energy vanishes at the end of the 
first swing, also corresponds to an equilibrium configuration. 
This condition requires that equations (20) and (14) be 
satisfied simultaneously for the history of plastic deformation 
previously described. In this case, the plastic strains at 4>B are 
given by 

^=-y(«i+#B)+—; 
(23) 

4* —W>o - 10o) • 
2 n 

Substituting these expressions in (20) and (14) leads to the 
following set of two nonlinear equations: 

- J - [(</>! - i?*a) - W§ -V4>0) + ] (2</>fl - r,) 

-—-(24>B + r,) = 0; 

[-|-[(^-»?*B)-(*g-'J*o) + ] +2 -̂] 

+ f-4^+1>**>+^r (*o+'/*o)—1=—• (24) 
v. 2 2 p, J p. 

For r\, ii as in equation (8), solving this system by a Newton-
Raphson iterative procedure, gives: 

</>0 = 0.0973066; <j>B = - 0.0070029. (25) 

With reference to the CD of Fig. 2, this value of c60 coincides 
with the last discontinuity in the undamped case (dashed 
lines), i.e., the one where the final steady oscillations jump 
from positive-negative to positive-positive. This seems to be a 
general result not affected by the characteristic parameters 
chosen for the system (Yu and Xu, 1988). 

5 Generalized Initial Conditions 

In the foregoing discussion we have taken the initial 
displacement angle <t>0 as a convenient parameter of loading. 
This is valid for short pulses such that </>0 is the peak deflec
tion, reached after the pulse force has decreased to zero. The 
precise form of the pulse is then of no significance, our in
terest being in the response history of the recovery following 
the first displacement maximum, not in the peak itself. 

The analysis presented in Section 3 explains why, for any 
finite damping coefficient, the final rest displacement has a 
value that changes sign in successive intervals of </>0. Within 
each of these intervals the value is calculable without difficul
ty. With damping present, a step-by-step numerical procedure 
is required. However, numerical schemes of different types, 
namely a standard Newmark implicit method (Genna and 
Symonds, 1988), and the central difference scheme used for 
the present results, have been found to give very close agree
ment, not only for the final displacement but even for the 
values of </>0 at which the bifurcation occurs. Solutions that are 
essentially exact within the usual limitations of numerical 
analysis are obtainable throughout the load range of interest, 
in which anomalous (counter-intuitive) final displacements are 
concerned. 

This conclusion can be generalized to a somewhat wider 
class of loading, namely that in which the load parameters are 
an initial velocity together with an initial displacement. As 
always, we assume that the displacement angle and the strains 
increase monotonically to their maxima. Any chosen value </>0 
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Fig. 8 Quadrant of phase plane showing generalized initial conditions 
(initial displacement and velocity), lor damping ratio f = 0 . 1 . Initial 
values in shaded zones lead to negative final displacement. Dot-dash 
lines show lower and upper bounds. Dashed curve shows boundary be
tween wholly-elastic and elastic-plastic response. 

can be regarded as the peak displacement attained by the 
system when loaded by a pure impulse applied to the 
undeflected structure; thus, the pair of initial values (0, 
(6) = (0, c/>!) leads to the pair (</>, <j>) = (<60, 0). Moreover, in the 
time history of the response from the initial values (0, <£,) to 
the final values (</>0, 0), at every instant /, there is a pair of 
values (</>,, </>,) that provide equivalent initial conditions in the 
sense that the eventual response is identical for all of them. It 
is reemphasized that to each such pair, by assumption, we 
associate the total and plastic strains that result from 
monotonic increase of deflection from the undeflected and 
unstrained configuration. 

The time history of response from the initial values (0, </>,) 
to the state (</>0, 0) provides a sequence of values of displace
ment and velocity which define a contour in the first quadrant 
of the ((/>, </>) phase plane. Both the time history and the con
tour in the phase plane depend upon the damping coefficient 
f, of course, but each contour is uniquely defined and 
calculable to an accuracy limited only by the precision of the 
computational device and algorithm being used. Contours 
defined for any fixed f and a range of values of <j>0 do not 
touch or intersect one another. 

Regarding the </>-axis as the locus of values of the peak 
deflection </>0, the successive intervals, in which the sign of the 
final asymptotic deflection takes alternately plus and minus 
values, correspond to zones in the first quadrant of the phase 
plane. These are illustrated in Fig. 8 for damping ratio f =0.1 . 
Here, the shaded areas represent initial conditions leading to 
negative final displacements, the unshaded areas to positive 
ones. The boundary curves correspond to bifurcation points 
(they are, in fact, singular points in the phase plane diagrams 
which would correspond to complete time histories). They are 
well-defined calculable curves, as previously noted; they can 
be computed analytically for the undamped case. There is no 
fine structure or independence of scale, such as observed in the 
fractal boundaries between attracting basins that characterize 
chaotic behavior (Thompson and Stewart, 1986). 

When f is made smaller, the zones of Fig. 8 become nar
rower and more numerous (as do the slots of the characteristic 
diagrams). If we consider f arbitrarily small, the separation of 
the boundary curves eventually becomes less than the preci
sion of the calculation. The boundaries then cannot be drawn, 
and the final state cannot be predicted. This limiting situation, 
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while of theoretical and some practical interest, has nothing to 
do with deterministic chaos. 

For the sake of completeness, Fig. 8 displays also the upper 
and lower bounds defined in. the previous section (dot-dashed 
curves) as well as the elastic limit (dashed curve). 

6 Conclusion 
Curves showing the elastic strain energy V and the total 

available energy [/as functions of displacement display clearly 
the combined roles of plastic deformation and damping in 
determining the final rest position of the Shanley beam model 
under short pulse excitation. The apparently complex alterna
tion of positive and negative final states, as the load parameter 
is increased, is seen to depend on the changes of shape of the 
V(4>) curve due to plastic deformation in the first half cycle of 
the recovery motion following the first peak displacement. 
Lower and upper bounds on the load parameters such that 
anomalous final response may occur have been computed for 
the system under consideration. 

Except when damping is taken arbitrarily small, the final 
response can be calculated accurately by standard methods 
with the special care normally required when bifurcation may 
occur. The presence of moderate damping does not introduce 
essential new difficulties. There is no fine structure within the 
zones illustrated in Fig. 8; the approach to the boundary con
tours is smooth. 
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The Extensible Cable as a Limiting 
Case of a Very Flexible Rod 
For an extensible cable with a free end, the exact nonlinear differential equations 
that describe the final shape of the cable present difficulties when one tries to in
tegrate them to find the angle of inclination in the vicinity of that free end. To cir
cumvent these difficulties, a method is proposed wherein the cable is replaced by a 
flexible rod. The moment of inertia of the cross-section of the rod is then allowed to 
approach zero while the cross-sectional area and the length of the rod remain finite. 
In that process, the rod approaches the cable as a limiting case, but since the rod has 
a proper differential equation on the inclination, no singularity occurs. To establish 
the validity of the method, two cases without a free end are considered first. For 
these, cable solutions previously obtained by the author are used for comparison. 
After that, the method is used to solve two cases involving a cable with a free end. In 
each of these two cases, the cable is suspended in a moving fluid, but they differ in 
the assumptions made about the drag force. The results obtained appear reasonable 
and suggest that this method, tantamount to removing the idealization of perfect 
flexibility from the cable, shows promise as a method of analyzing cables with a free 
end. 

Introduction 
Recently, the author has exhibited a method for analyzing 

extensible cables by numerically integrating the system of ex
act nonlinear differential equations that describe a cable in its 
final state (Huddleston, 1981). Consider the cable in Fig. 1. 
With the adoption of an engineering definition of strain, the 
differential equations become: 

dNr 

-=-px U«) dx 

dNy 

dx ~Py 

N=^NX
2+Ny

2 

TV 

6 = arctan 

A 

e = g(°l 

dt, Nx 

(1*) 

(lc) 

(Id) 

(le) 

(if) 

Og) 
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drj 

~dx TV 

ds 
~dx 

1+e 

(lh) 

(10 

in which x is the original coordinate of the general point P 
when the cable is in an unstretched state, Nx and TV,, are the 
components of the normal force TV in the cable, a is the stress, 
e the strain, d the final inclination of the centerline, £ the final 
x-coordinate, iy the final j-coordinate, s the distance along the 
centerline in the stretched state, andpx andp7 the distributed 
forces per unit length of original centerline. The quantity A is 
the effective cross-sectional area. To obtain a differential 
equation on 0, equation (1/) can be differentiated with respect 
to A: to obtain: 

Fig. 1 Extensible cable 
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de 

~dx 

Nr-
dNy 

dx 
—N„-

dNx 

dx 

N/+N/ 
(2) 

To achieve a linear stress-strain relation, let equation (le) be 
written as: 

a (3) 

where E is the effective modulus. 
If forces qx, qy per unit length of deformed centerline are 

specified, thenpx,py can be computed from: 

Px = Qx—r- (4°) 

Py 

dx 

ds 

dx 
(4b) 

A number of cases in which the cable is fixed at both ends 
have been solved (Huddleston, 1981). In the analysis of a cable 
with a free end, however, a difficulty arises in establishing a 
value for the inclination 6 at that free end, inasmuch as the on
ly differential equation available for 6 in this theory is equa
tion (2), and that one presents problems when an attempt is 
made to integrate it in the vicinity of the free end, where N and 
thus both of its components are zero. This difficulty also 
manifests itself in the indeterminate forms that occur in equa
tions (If), (lg), and (1/0 at the free end. 

The purpose of the present paper is to show a way to cir
cumvent such difficulties by treating the extensible cable as a 
limiting case of a very flexible rod. This picks up on a sugges
tion made by Huddleston and Dowd (1979), which is to let the 
moment of inertia I0 of the cross-section of the rod approach 
zero while its area A0 and its original length L remain finite. 
In this process, the extensibility parameter C defined as 

C-
AnL

2 (5) 

approaches zero. 
The exact differential equations of an extensible rod are as 

follows (Huddleston and Dowd, 1979, and Nicolau and Hud
dleston, 1982): 

dx 

M 

~ET 

duy 

dx 

dx -(••-£-) 

sin 8 

cos 6 

ds 

~~dx~ 

dux 

dx 

dN _ dd 

dx dx 

dQ dd 

dx dx 

dM 

••1+-
N 

EA 

dk 
1 

dx 

-px cos 6 —py sin i 

-px sin 6 +py cos i 

dx =Q(1+^r) 

(6a) 

(6b) 

(6c) 

(6d) 

(6c) 

(6f) 

(6g) 

(6/0 

in which, in addition to the notation defined for equations (1), 
ux and uy are the displacements of the general point P from its 

original position, / is the moment of inertia of the cross-
section about its centroidal axis, Q is the shear force, and Mis 
the bending moment. For the case of a prismatic rod, A =A0 

and I-I0. 
For the prismatic rod, equations (6) can be reformulated in 

a dimensionless way as follows: 

dd 1 M 

'(-f) 
C EA„L 

= (\+ ) si 
V EAJ 

sin 8 

'(-f) 
(,+ik) cos 8 

'(•f) 
1+-

N 

«(i) 

<4) <-¥) 
<(-f) '(-f) 

(7a) 

(lb) 

(7c) 

(Id) 

(le) 

i\EAj__ Q_ d8 

<£) 

PxL 
EAn 

N 

PyL 
EAn 

sin 8 Of) 

de 

<(-f) 
EAn 

'(•f) 
PxL • flJ PyL 

sin o-l — cos i EAn EAn 

\EA0L) 

EAn (1+^r) 

Og) 

(Ih) 

Now there is a proper differential equation on 8, equation 
(7a), that gives dd/dx = 0 at a free end as long as C is nonzero. 
The method of this paper is to solve the rod problem with pro
gressively smaller values of C to determine if there is a limiting 
shape that could be considered the solution to the corre
sponding cable problem. An integrating package for nonlinear 
two-point boundary value problems, similar to that used by 
Huddleston and Dowd (1979), is used for this purpose. 

Four cases are considered: 

(A) cable under a midspan concentrated force, 
(B) cable under its own weight, 
(C) cable with free end, suspended in a moving fluid, 

drag a function of inclination only, and 
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Fig. 3 Tie rod under own weight 

(D) cable with free end, suspended in a moving fluid, 
drag a function of inclination and depth. 

Cases (A) and (B) are used to compare the rod solutions with 
known cable solutions given by Huddleston (1981). Cases (C) 
and (D) are posed as problems for which the cable solution is 
not readily apparent, but some information about it can be 
obtained by the method of this paper. For all of the problems 
solved, the computer package can be used in a form consisting 
of a main program and eight subroutines. The main program 
and two of the subroutines are problem dependent. The rest 
are problem independent. 

One advantage of the method is that a small amount of flex-
ural stiffness can be left in the rod to represent the small 
amount of moment-carrying capacity of a cable that is an im
portant effect in some practical problems. 

Cable Under a Midspan Concentrated Force 

Figure 2 shows profiles of a pinned-pinned tie rod carrying a 
midspan concentrated force given in dimensionless form as: 

EA„ 
= 0.001. (8) 

The parameter C starts at the smallest value considered by 
Huddleston and Dowd (1979) and is then reduced two more 
times to still smaller values. Also plotted is the shape of the 
ideal cable obtained from equations (7) of the paper by Hud
dleston and Dowd (1979). The abrupt slope change at the mid
point of the ideal cable, of course, ca"nnot be replicated by the 
tie rod, so this problem makes excessive demands on the pro
posed method. 

Cable Under Its Own Weight 

Figure 3 shows profiles of a pinned-pinned tie rod under its 
own weight, with 

px = 0,py=-po (9) 

and with 

P0L 
EAn 

= 0.001. (10) 

Three curves are shown using the same three values of C as in 
Fig. 2, and the result for the ideal cable obtained by the 
method of Huddleston (1981) is also shown. 
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L 

Fig. 4 Tie rod with right support displaced inwardly 

Figure 4 shows similar results for the configuration con
sidered by Huddleston (1981) of the right-end support at a 
distance of 0.75L from the left-end one. 

Finally for this problem, Fig. 5 shows how the tie rod quan
tities 

at the left end, where RA is the horizontal reaction, vary with 
the position of the right-end support for a single value of C, 
namely, 0.00005. 
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Fig. 5(a) Variation of 0A with right-end position 
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0.003 

Ri 
0.002 

EAr 
0.001 

0.000 

-0.001 | i 
0.00 0.05 0.10 0.15 0.20 0.25 

Fig. 5(b) Variation of RAlEA0 with right-end position 

Cable With Free End, Suspended in a Moving Fluid, 
Drag a Function of Inclination Only 

To test the method on a cable with a free end, the problem 
of a cable suspended in a moving fluid, as in Fig. 6, is con
sidered. In this case, it is assumed that the drag force is 
horizontal and is a linear function of \6\, i.e., 

<?*=— Qo\9\ (11) 

X 

Fig. 6 Cable in moving fluid 

ponents determined separately, could be incorporated into the 
method. 

Cases with 

Qo=<XPo (14) 

for various values of a have been solved, and results are 
shown in Fig. 7 for a = 0.5. The rod profiles come out very 
close to straight lines, thus suggesting the possibility that the 
cable possesses an equilibrium state with 6 equal to a constant 
in this case. To investigate that possibility, consider the 
following boundary value problem taken from equations (la), 
(16), and (V): 

PyL 
EAn 

tan0=— y— 

If the cable is inextensible, then 

ds . 

dx 

and the applied forces are: 

pxL 2 P0L 

but that again 

EA0 ir EA0 

PyL P0L 

Py=~Po- (12) 

From equation (4a), therefore, 

2 ds 
Px=—q0\B\--. (13) 

ir ax 

More realistic drag forces, with normal and tangential com-

EA0 EA„ 

Thus, equations (15a) and (156) become: 

^ EA0 ) 

<(-f) 
2 P0L 

a 
7T EA„ 

(15a) 

(156) 

(15c) 

(16) 

(17a) 

(176) 

(18a) 
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Fig. 7 Rod suspended in moving fluid 

^ EA0 ) p0l 

<(-f) 
EA„ 

(18b) 

Now search for a solution with constant |0|. With that assump
tion, equations (18) can be integrated to obtain: 

Nr 

EA„ 

2 a PqL 
w EA0 

PoL 

EAn 

•'(-f)-r«« 
P0L / x \ p0L 

EA EAn 

At x/L = 0: 

Nr 

EAn 

2 P0L 
- a 

TT EA„ 
-^x-lS-W 

N, 
y , PQL 

EA0 EA0 

Therefore, from equation (15c): 

•K 1 
tan 0 =-

2a 10 

For the cases displayed in Fig. 7: 

tan 

(19a) 

(19*) 

(20a) 

(20ft) 

(21) 

(22) 

A value of 0= - 1.2046 satisfies this equation, and a straight 
line with this inclination is also plotted in Fig. 7. 

It is obvious that the rod solutions approximate the 
inextensible-cable solution very well in this case. 

Cable With Free End, Suspended in a Moving Fluid, 
Drag a Function of Inclination and Depth 

To ensure that the cable profile is not a straight line, a final 
case is considered in which the drag is a function of depth as 
well as inclination. Equation (11) is now replaced by: 

2 
— Qo |0| 

Horizontal scale exaggerated 
two t imes vert ical 

p L / E A 0 = 0.001 

Cable Equations 
C = 0 .00002 

- C = 0 .00005 
• - - c = 0 .00010 

(23) 

Fig. 8 Drag also a function of depth 

Figure 8 shows the rod profiles for the three values of C again. 
These, like the results in Fig. 7, were obtained by solving a 
two-point boundary value problem with shear and bending 
moment specified as zero at the free end. Among the results 
yielded by the package of computer programs are the inclina
tion and horizontal reaction at the pinned end. These are more 
easily found from the rod package than from the cable 
package because of the aforementioned difficulty experienced 
in dealing with the free end of the cable. Now, however, the 
missing initial conditions found in the rod solution can be used 
to solve the cable problem in the form of an initial-value 
problem. The result so obtained, using values from the case C 
= 0.00002, is also plotted in Fig. 8. The validity of this curve 
is questionable, however, since the singularity still exists at the 
terminal point of the integration process. 

Conclusions 

For an extensible cable with a free end, the idealization of 
perfect flexibility leads to difficulties in solving the 
mathematical problem, much in the same way that the 
idealization of inextensibility in a tie rod, fixed at both ends, 
leads to physically meaningless results. By removing some of 
the idealizations and approaching reality more closely, one 
can obtain more meaningful results. Then the idealized state 
can be looked upon as a limiting case. 

In this paper, the extensible cable is treated as a rod with a 
small amount of flexural stiffness, and the perfect cable is 
then regarded as a limiting case. 
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Nonlinear Modeling of Flexible 
Multibody Systems Dynamics 
Subjected to Variable Constraints 
This paper presents the geometric stiffening effects and the complete nonlinear in
teraction between elastic and rigid body motion in the study of constrained 
multibody dynamics. A recursive formulation (or direct path approach) of the 
equations of motion based on Kane's equations, finite element method and modal 
analysis techniques is presented. An extended matrix formulation of the partial 
angular velocities and partial velocities for flexible (elastic) bodies is also developed 
and forms the basis for our analysis. Closed loops and kinematical constraints 
(specified motions) are allowed and their corresponding Jacobian matrices are fully 
developed. The constraint equations are appended onto the governing equations of 
motion by representing them in a minimum dimension form using an innovative 
method called the Pseudo-Uptriangular Decomposition method. Examples are 
presented to illustrate the method and procedures proposed. 

1 Introduction 
With the advent of computer hardware and software, it is 

becoming apparent that much is needed to be investigated 
before the new technology of faster robots, more efficient, 
and intelligent systems is to be developed. Algorithms for 
simulation of complex mechanical systems require the 
understanding of the application in question. The deployment 
of space satellites, the assembly of space structures, 
mechanisms, intelligent teleoperators, advanced robot 
systems, walking machines, among others, share a common 
kinematical, dynamical, and control problem. A number of 
researchers are developing theories and methodologies in the 
study of multibody dynamics where the effects of geometric 
nonlinearities, coriolis effects, nonuniform cross-section 
areas, and body structure composition are considered and, 
hence, automatically included in the equations of motion. The 
need in modeling with accuracy the dynamics of mechanical 
systems requires the automatic inclusion of geometric stiffen
ing and complete nonlinear interaction between elastic and 
rigid body motion. The equations of motion must also be ex
pressed in a minimum dimension form. 

Earlier models of multibody systems by finite element or 
assumed mode methods were based on the assumption that 
small deformations of the bodies do not affect the nominal 
rigid body motion significantly (Imam and Sandor, 1975; 
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Baghat and Willmert, 1976; Turcic and Midha, 1984; 
Naganathan and Soni, 1986; Sunada and Dubowsky, 1981; 
Ho, 1977). In their analysis, the inertia and reaction forces 
were evaluated from rigid motion and introduced to the linear 
elasticity problem as external forces for computing the cor
responding deflections. The elastic deformation is then 
superimposed on the nominal rigid body motion. This pro
cedure, however, does not yield accurate results when high 
speed systems are concerned, since it does not provide for the 
dynamic coupling of both the rigid and elastic motion. 

Analysis procedures developed by Yoo and Haug (1985) and 
Agarwal and Shabana (1985) involve formulation of the equa
tions of motion of each elastic body in terms of its "absolute" 
rigid body and elastic degrees-of-freedom. Then the rigid body 
motion and elastic deformations are solved simultaneously. 
However, the interconnections of the bodies are described by a 
large set of constraint equations formulated for each type of 
joints. This procedure increases the dimension of the problem 
considerably and the coordinate reduction by the elimination 
of the Lagrange multipliers associated with the constraint 
forces from the system equations of motion require the costly 
computations of updated transformations. 

Singh et al. (1984) used a recursive formulation based on 
Kane's equations for multi-flexible body systems using as
sumed modes method where the assumed modes are obtained 
by a prior finite element analysis of each body. However, the 
formulation was restricted to clamped-free mode shapes and 
to the analysis of open tree configurations. 

Recently Kane et al. (1986) showed that the geometrical 
nonlinearities in beam-like bodies arising from the coupling of 
longitudinal and transverse deformations have a considerable 
effect on the deformation of beams in high speed systems. 
These coupling effects were considered in the generalized iner
tia forces where a constraint equation is used to express the 

444/Vol. 56, JUNE 1989 Transactions of the ASME 

Copyright © 1998 by ASME
Copyright © 1989 by ASME

  Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 1 A multibody structure 

relationship between the deformation displacement 
components. 

This paper's motivation stems from the purpose of over
coming the shortcomings of the various approaches under
taken and the algorithms developed in the past. A general 
recursive formulation utilizing relative coordinates and an 
algorithm ready for programming will be developed using 
Kane's equations and the convenience of partial velocity vec
tors. The equations of motion developed will incorporate 
arbitrary-shaped flexible bodies, will contain the complete in-
terations of the rigid body motion and elastic deformations, 
and will be applicable to both open and closed configurations 
with prescribed motions. For these purposes, flexible body 
reference frames whose orientations depend on both the rigid 
body motion and the specified boundary conditions, consis
tent mass finite element approach together with component 
mode reduction, and a stable and efficient method for the 
elimination of the undetermined multipliers will be utilized. 

2 Analytical Development 

2.1 Notation and Preliminary Considerations. Consider 
a multibody system consisting of N rigid and flexible bodies as 
depicted by Fig. 1. The bodies in the system are interconnected 
by joints allowing, in general, six degrees-of-freedom. The 
system may be an open tree-like system, it may contain one or 
more closed loops, and any selected points may have pre
scribed motions. 

In the notation, bold characters will be used to denote vec
tors whose components are described along unit vectors in a 
Cartesian reference frame. Matrices and vectors in the form of 
column matrices will be represented by omitting the 
subscripts. In the equations, the summation sign will be omit
ted, such that repeated index in a term implies summation over 
the range of the index. Superscripts are generally part of the 
labeling and do not imply summation unless otherwise 
specified. 

A typical flexible body of the system is defined as a body Bk 
that undergoes relative rigid body motion, with respect to the 
lower body Bj, and small deformations at the same time. For 
this purpose the bodies in the mechanical systems are 
numbered in ascending order like a tree configuration starting 
from an arbitrary body. 

The topology of the structure will be described by means of 
a tree array Th (k), k = 1, . . . , N. Let !"(&) denote the adja-

Journal of Applied Mechanics 

Fig. 2 Labeling position vectors in adjacent bodies (N represents an 
axis frame whose mutually-perpendicular unit vectors are N^NJS, Njj. 
Similar representation is used for the other axis frames n", nk , nw). 

cent lower body connected to Bk. Then one can generate 
Th(k)h > 2. Let H(k) represent the maximum order h for 
which T* (k) is nonzero for Bk. Then the tree array Th (k)h = 
1, . . . , H indicates the chain of bodies which are on the path 
from Bk to the reference frame (Huston et al., 1978). 

Two connecting bodies Rk and Bj are shown in Fig. 2. The 
connection points are Qk and Q% on Bk and Bj, respectively. 
The rigid body degrees-of-freedom of Bk are characterized by 
the relative translation and the relative rotation of the n* axes 
fixed (to an infinitesimal element) at Qk, with respect to the 
n* axes fixed at Q*k. (See Fig. 2 for the representation of the 
unit vectors.) 

Let N* be the body reference axes of Bk relative to which the 
deformation of the body is defined. N*, in general, is not fixed 
to a point on the body. Its orientation during the rigid body 
motion and the deformation is defined such that the boundary 
conditions specified at the connection points are satisfied. By 
this way any set of boundary conditions at the joints can be 
specified corresponding to the mode shapes, which best 
describe the deformation of the body. Consider an axis frame 
denoted by n*' which is located at Ok and parallel to the in
itial orientation of the element axes'n*'. Then the position vec
tor from Ok to an arbitrary point P in the element, rkl can be 
written in N* as 

xki = <$>fef 1=1,. . . ,nki (1) 
where <j>ki is the shape function matrix containing the 
necessary transformations from n*' to N*, and ef' is given by 

ef' = eS + of' (2) 
where ek\ are the initial nodal coordinates of element /, 
yielding the undeformed position vector, and akl are the nodal 
deformation displacement coordinates of element /. In equa
tion (1), nkl is the number of the nodal coordinates of element 
i. The total number of the nodal coordinates of Bk, after 
assemblage, will be denoted by nk. And the summation of nk, 
from k=\ to N, will then be denoted by n. 

Expressing rk in a similar manner, q*' can be written as 

qki=(4>kiBf>-<l>kBk
p)e

k p=\, «*; /= 1, nki (3) 
where 4>k is the shape function matrix of the element in which 
Qk lies, evaluated at the coordinates of Qk, ek are the nodal 
coordinates of Bk and Bkl and Bk are boolean matrices in
dicating the indices of nodal coordinates of the respective 
elements in ek. These boolen matrices describe the connectiv
ity between the elements. 

Similarly, we also express d* in Ny as 

where 4>k and <f>> are the corresponding shape function 
matrices at the coordinates of Qk and Qj in N7", and Bk and 
B> are the corresponding boolean matrices. 
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By utilizing the rotation displacement relations of elasticity 
(Dym and Shames, 1973), the rotations dki, = r - 1, 2, 3 of an 
infinitesimal element at element /, with respect to N*, can be 
expressed in terms of the nodal coordinates, in the form 

Qki = ypkieki r=ly 2, 3; 1=1, . . . , nki (5) 

where \pki are functions of the undeformed position 
coordinates. 

2.2 The Generalized Coordinates and Generalized 
Speeds. To reduce the large number of elastic coordinates, 
the standard component mode technique will be utilized 
(Hurty, 1965). This involves using a small number of mode 
shapes for each flexible body. The modal coordinates i/; are 
given by the modal transformation X obtained for the system 
from the free-vibration eigenvalue problems of each flexible 
body, 

<xi=xipyP 1=1,. . . ,n;p=l, . . ,m. (6) 

The eigenvalue problem for Bk can be expressed as 
(Przemieniecki, 1968) 

Mk
rla

k+Kk
rla

k = 0 (7) 

where Mk and Kk are the structural mass and stiffness 
matrices obtained by imposing the selected boundary condi
tions at the connection points. The approximate solution to 
equation (7) is 

ak=X?prik l=l,...,nk;p = l, mk (8) 

where Xk is the matrix with eigenvectors (mode shapes) as col
umns, i)k

p are the modal coordinates of Bk and mk is the 
number of the eigenvectors retained. Then Xin equation (6) is 
obtained as a block diagonal matrix whose diagonal sub-
matrices are Xk, k= 1, . . . , N. 

The relative rigid body translation vector f* can be ex
pressed as 

J* = tfnf /= 1.2,3. (9) 
For the relative rigid body rotation degrees-of-freedom, the 

successive Euler angles (in transforming n* to n*) can be 
used. Hence, the position of the system can be described by 3N 
Euler angles, 3JV relative translation components, and m 
modal coordinates. 

The angular velocity of n*( with respect to n* , can be ex
pressed as 

= A*n** p = l , 2 , 3 (10) 
— D 

CO 

where &k denotes the relative angular velocity components. 
Then the generalized speeds yt of the system could be conve

niently selected as the 37V relative angular velocity components 
w/, the 3Nrelative translational velocity components f/; and m 
modal coordinate dervatives »j;, 

and 

2.3 Angular Velocities. For obtaining the velocity of 
point P in the stationary reference N°, we need the angular 
velocity of N* in N°, co*, and the angular velocity of n* in 
N°,u* . o>k can be written as 

A — r / , 1 A l A l ,",N ,\N ,\N-\T CO — ICOj, 0>2, C03, . . . , CO! , 0>2 , C03 J 

S — lS l> S2> S3> • • • > Si 1 S2 > S3 J 

= [ * { , . , . . < ! , . . . . ^ VN
mNV 

y = \G>T,iT,i)TV. 

(11) 
(12) 

(13) 

(14) 

i r ~ n n — n n - N 
+ CO + CO + CO . 

ir'-n' 

(15) 

and 

« = - « c 

(16) 

(17) 

where the matrices \j/k , \jS and \j/k of respective elements are 
evaluated at the coordinates of Qk, Q,, and Qk, respectively. 
Using equations (10), (16), and (17), considering the 
topological information of the multibody system and making 
use of the transformation matrices between axis systems, oik 

can be compactly expressed as 
o>k = v

kwl + nkap 1=1,. . . ,3N;p=l,. . . ,n (18) 

where vf and np are the partial angular velocity vectors com
posed of the coefficients of co, and ap, respectively, 

urn 
»! = £ S»V„,N° s = T"(k);r = T(s) (19) 

and 

4=) £ 5 - w « K -Vu&qwqp-s°m
kjk

utB
k
qb

k
p N» 

v h = o J 

(20) 

where the boolean matrices ak and bk are defined such that co* 
= aki&, and ek = bqpep. co* is obtained by deleting the last 
two terms in equation (15), 

«* '=W«/+ /*£*«/> J = T(.k) (21) 

where for /** the last term in equation (20) is deleted. 

2.4 Velocity and Acceleration of an Arbitrary Point. 
The position vector to P in R is 

Pw = I > + X > + qw (22) 

where the summations are carried for the bodies along path 
fromN0 to Bk. 

Differentiating equation (22), utilizing equations (3), (4), 
(9), (18), and (21), and making use of the coordinate transfor
mation matrices and boolean matrices, the velocity vector v*' 
can be expressed as 

v*'=7*'co, + ><*f;+ /?£%, 
1=1,... , 3«; p= 1,. . . , m 

(23) 

where yki, vk, and f}kl are the partial velocity vectors contain
ing the coefficients of the generalized speeds co;, £, and T\P. 
Again, the partial velocity arrays can be expressed in a form 
ready for coding, 

C mk) 
yf'={ E \Sfq*^ruemlh+Sfqdytlemlh} + Stqq^vk

lemth\)H<;i 

(24) 

and 

mk) 
W = { £ [SiS* $4 emlh + s°hqd°qn: tjcmth 

Using equation (5), co and co can be expressed as 

+ S%, (<j>£ B& - <j>r
lvB

r
m Wuj} + S°* («J*fl« 

-tfXDKj + S°h
kqkJ4emth]xjpNm°. (25) 
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The acceleration of point P is then obtained by differen
tiating equation (23) 

a*' = yf'Co, + vlf'il + jS*^ + yf'u, + vkt,+ # ' V (26) 

2.5 Equations of Motion for Tree Topology. Kane's 
equations for the multibody system can be written as 

Ff+Fl-Fj = 0 1=1,. . . ,6N+m (27) 
where F*are the generalized inertia forces, Ft the generalized 
external forces and Fj the generalized internal forces due to 
the strain energy of the bodies. 

The generalized inertia forces due to the inertias of the par
ticles in each body for the entire system are 

" E* f Qyki 

Ff=- K >J pki .a*'dK 1=1, . . . , 6N+m (28) 

where pkl is the mass density and Vkj is the volume of the 
element. 

For the generalized external forces, let the element / be sub
ject to external surface tractions f*' and body forces b*', ex
pressed in terms of the axis N°. Then 

N Ek 

k i Jvki 

Ql= E E t„ PTSr (7S;«; + *£/f/ + $^,iiP)dV 
T T J vki 

Qj = V V I „„* (^ki.A,. j . ;,k .K j . Rki 
k i J vki ' 

PVkmr(iml&l + ^mltl + $mpVp)dV 

Qs = E E t „ P 0 # r ( 7 # A + y*mltl + PmpVp )dV 
T TJ "« 

(32/) 

(32*) 

(32A) 

(320 

*! = EE ( 7S«/S'dS+[ yXrlftdv] (32/) 
•> ski J vki J 

P,= E E [ J 
* = I 1 = 1 L J 

3v*' •f*''rfS + bk,dV 
Jvki dy. 

1=1, ,6N+m (29) 
where Skl denotes the part of the element surface which lies in 
the global boundary. 

The equations of motion for the multibody system can then 
be written as 

(30) 
or 

M11 M12 M13 " 

M21 M22 M23 

M31 M32 M33 

+ 

My + S+Q = F 

& 

f 
_^_ 

" e1 

Q2 

e3 

+ 

= 

0 

0 

s3 

" F 

F2 

F3 

(31) 

where 

MU = E E 1 P 7 M ^ m= 1,2,3; r,/= 1, 3iV 

^ / 2 = E E [ F P^rVLdV 
k i Jvki 

(32a) 

(326) 

M$ = E E 1 PPXdV s,t=\,...,m (32c) 

M W = E E L P7Sr"U^ 
* ,' Jvki 

^ 3 = E E L py^Msdv 
k i •'Vki 

(32d) 

(32e) 

^ = E E f ( , « '<«+[ <rb
kJ,dv\ (32k) 

k i LJSki Jvki -> 

^ = E E | " L M'<«+f Msb%dv\ (32/) 

and 

S]=Xjp(Kpq + Gpq)aq p,q=\, . . . ,n,s=\, . . . , m. (33) 
In equation (33), G represents nonlinear stiffening terms due 
to structural geometrical constraints of the deformable body, 
and needs to be updated. AT and G are block diagonal matrices 
expressed as 

K=diag[Ki,. . . ,Kk,. . . ,KN] (34) 
and 

G = diag[G' Gk CP] (35) 
where Kk and Gk are, respectively, the structural and 
geometric stiffness matrices of Bk. 

By manipulation in equations (32), the time-dependent and 
space-dependent terms are separated reducing the spatial in
tegrals to 

[ 4%,dV, \ <t>kiMdV, u,s= 1, 2, 3; v,t= 1, nk> 

J vki J vki 

which are evaluated only once in the analysis. 

2.6 Geometrical Stiffness for Beams in Three-
Dimensional Motion. The linear strain energy theory 
assumes that the deformation components are independent. 
But in high speed systems, high axial forces occur and the 
coupling between the axial and transverse deflections become 
significant, causing geometrical stiffening of the transverse 
deformations. For this reason, higher-order terms in the strain 
energy need to be considered. 

Consider a beam element where the element reference axis 
frame n is located at the centroidal line. Let x, be tangent to 
the centroidal line and the other two axes be the principle axes 
of the cross-section. Let v,(x, t) and d^x, f) represent the 
deformation displacement and rotation components of axis 
frames located along the centroidal line x distance away from 
the element axis in the undeformed state. Then the displace
ment field for arbitrary points in the beam element, «, (x, y, z, 
t) can be expressed for small bending and torsion in terms of 
the undeformed state coordinates 

ul=vl+zd2-ydJ 

u2 = v2-z61 

"3 =Vi+y0i. 

(36) 
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Fig. 3 A multibody structure with closed loop 

If the volume change of an infinitesimal element in the 
deformed body is negligible, the strain energy is given by 
(Dym and Shames, 1973) 

U= [ eTadV (37) 

where e and a are, respectively, the vectors of strain and stress 
components. 

ep, p=l, . . . , 6 are determined using nonlinear strain 
displacement relations where the displacements are given by 
equation (36). Utilizing generalized Hook's law, the strain 
energy is obtained from equation (37). 

Considering that the beam is not subject to lateral tension or 
compression, a2 and a} can be taken to be zero. Our aim is to 
retain the significant nonlinear terms in the strain energy 
related to high axial stresses, which is not ruled out by the 
assumed deformation field given by equations (36). Hence, 
fourth-order terms in dv2/dx and dv3/dx; third-order terms in 
d6p/dx, p = 1, 2, 3; and second-order terms in ddp/dx 
multiplied by dv2/dx or dv3/dx are neglected. Furthermore, 
the shear deformation is assumed small so that third-order 
terms involving (dv2/dx - 63) and (dv3/dx + 62) are 
neglected. This yields the following additional terms in the 
strain energy 

r _ EA f duf / d u f \ 2 , EAt d u f / M ' N 2 

UQ= \ _ _ L ( _ ^ _ dx+ — - ( — - ) dx 
2 h dx V dx / 2 h dx V dx ) 

(38) 
where E is modulus of elasticity and A is cross-sectional area. 

The element geometrical stiffness matrix can be determined 
by making use of Castigliano's theorem, then the matrix Gk in 
equation (35) can be obtained by the standard finite element 
assembly procedure. 

3 Constrained Systems 

3.1 Constraint Equations. Let us suppose that in the 
multibody system there are closed loops, and some bodies 
have a given prescribed motion, then the system becomes sub
jected to these constraints. 

For a closed loop, let Br and Bs connect with each other to 
form the closed loop as in Fig. 3. Also, let cr be the unde-
formed position vector in W from Or to the connection point, 
and cs the undeformed position vector in NJ from Os to the 
connection point. Then the associated three constraint equa
tions are 

W - 7 f ' ) " / + K - " ! ) f / + (ty-fl)i$ = 0 (39) 

where yr,' and /S£ correspond to the spatial coordinates (c\, cr
2, 

e$) and yf and 0$ to (c?, c§, c§). 
In the case where a point has prescribed motion, let the 

prescribed velocity of a point A in Br be g(t) with respect to 
N°, and let cr be the undeformed position vector in Nr from 
Or to A. The three constraint equations become 

-rf&, + »it, + PfaP=-gV) (40) 

where the spatial coordinates in yj and 0rJ are (cj, cr
2, c

r
3). 

Finally, consider a body Br whose reference axis Nr has a 
prescribed angular velocity h(t). In this case the constraint 
equations are 

p^l + HrjXJpr,p=h(t). (41) 

The holonomic and nonholonomic constraint equations can 
be compactly written as 

B,;yi=g, i= 1, • • • , c; /= 1 6N+m (42) 

where c is the number of the constraint equations. 
Kane's equations for the constrained system are given by 

Ff+F,-Fj+Fj = 0 1=1, . . ,6N+m (43) 

where 

jPy = X X / = i , c. (44) 

Fj are the generalized constraint forces and X, are the undeter
mined multipliers. 

It is rather obvious, from a computational point of view, 
that the equations of motion must be reduced. If the system 
has 6N+m degrees-of-freedom and is subjected to c con
straints, then the degrees-of-freedom reduces to 6N+m — c. 
The representation of the generalized constraint forces, as 
depicted by equation (44), makes the reduction of the equa
tions of motion more attractive. To eliminate the undetermin
ed multipliers, one needs to find an orthogonal complement 
matrix to the Jacobian matrix B. 

There are a number of methods available for eliminating the 
undetermined multipliers in equation (43) which reduce the 
governing equations to 6N+m — c. These include the zero 
eigenvalue theorem (Kamman and Huston, 1984) and singular 
value decomposition (Singh and Likins, 1985)-which require 
solving 6N+m dimensional eigenvalue problems-and coor
dinate partitioning methods (Wehage and Haug, 1982; 
Wampler et al., 1985)-which may lead to singularities de
pending on the selection of the independent coordinates. 

Recently new computationally-efficient methods have been 
introduced, based on uptriangular decomposition of the con
straint Jacobian matrix B, by successive Householder 
transformations (Amirouche and Jia, 1988); or by generating 
a row equivalence transformation matrix using Gauss-
elimination row operations (Ider and Amirouche, 1988). Then 
a matrix orthogonal complement to the uptriangular matrix is 
identified. This leads to the generation of a transformation 
matrix C which is orthogonal complement to B. These 
methods also provide the capability of avoiding singularities 
that occur when the constraint equations become instan
taneously linearly-dependent. 

3.2 Solution Procedure. Premultiplying equations (43) 
by CT, we obtain 

(%(Ft+F,-F[)=Q (45) 

p=l 6N+m-r; 1=1,. . . ,6N+m 

where r<c is the number of the linearly-independent con
straint equations. 

Using the results of the previous section, equation (45) 
becomes 

CTMy = CT(F-S-G). (46) 
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Fig. 4 Cantilever beam with rotating base 

IX-flecc 

Fig. 5 Tip deflection: (1) without geometric stiffening, (2) with 
geometric stiffening (Ryan, 1987), and (3) with geometric stiffening (this 
paper) 

Let /^-independent constraint equations be written as 

Duy, = h, i= 1, . . . , r; /= 1,. . . , 6N+ m (47) 

where the selection of the independent equations are done 
automatically during the formulation of C (Amirouche and 
Ider, 1988). Differentiating equations (47), we have 

0^1 + 1)^,-^ = 0 i = l r. 

Fig. 6 Planar manipulator with link 2 constrained to remain horizontal 

(rad) 

Fig. 7 Tip deflection of link 2: (1) link 1 rigid and (2) both links flexible 

tions (14) form a set of first-order differential equations which 
can be numerically integrated, e.g., with a variable step 
predictor-corrector algorithm, to yield the time history of the 
6N+m generalized speeds 6>h f,, and i\p, the relative orienta
tion angles (through the usage of transformations between the 
orientation angle derivatives and uf (Kane et al., 1983)), the 
relative translation components f, and the modal coordinates 
7). To avoid singularities, Euler parameters can be used in 
place of the orientation angles. 

(48) 4 Numerical Results 

Combining equations (46) and (48) we obtain 

Hipyp=R, p,l=l,. • • ,6N+m 

where 

l,q=\,. . . ,6N+m 

(49) 

and 

R \Cpl(-S,-G,+F,)-\ 

(50) 

(51) 

The 6N+m equations (49) together with the 6N+m equa-

A general purpose computer program for constrained 
multibody systems has been developed utilizing the procedures 
presented in this paper. The program automatically eliminates 
the constrained joint degrees-of-freedom by deleting the cor
responding rows in the partial velocity vectors, hence 
eliminating constraint equations for the joint connections. 

To illustrate the effects of the geometrical nonlinearities and 
effects of the elastic deformations on other bodies, simula
tions of a cantilever beam with rotating base and a planar 
manipulator will be presented. 

4.1 Cantilever Beam With Base Motion. The system 
shown in Fig. 4 was simulated as a spin-up benchmark 
problem by Ryan (1987). In this reference, an explicit relation 
between the axial and transverse deformations was used in the 
derivation of the generalized inertia forces to obtain the 
related geometric stiffening terms. The data used for the 
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simulation as given by Ryan (1987) are: length L = 10 m, 
cross-sectional area A = 0.0004 m2, mass m = 12 kg, area 
moment of inertia / = 2 x 10-7 m4, the modulus of elasticity 
E = 7 x 1010 N/m2 and the shear modulus G = 3 x 1010 

N/m2. 
The simulation was performed by using four elements and 

by including the first three transverse, and the first 
longitudinal modes, using standard beam, element shape func
tions as given by Przemieniecki (1968). 

The generalized coordinates of the system are the base rota
tion 6 and the four modal coordinates. The fact that base mo
tion is prescribed is represented as a constraint equation, 
hence equation (49) is used for numerical integration. The can
tilever beam undergoes a rotational acceleration period, where 
initially 0 = 0, and the base acceleration (h in equation (48)) is 
given by 

— ( l - cos )rad/sec 0</<15sec 
5 V 7.5/ (52) 

0 t>15 sec 
Figure 5 shows the tip deflections in the local beam axis for 

20 seconds and, as expected, the results agree with those of 
Ryan (1987). This simulation shows clearly that without the 
proper stiffening expressions, the simulations of spin-up mo
tions may lead to completely incorrect results. 

4.2 Planar Manipulator. In the planar manipulator 
shown in Fig. 6, link 1 rotates with a constant angular velocity 
0j = 10 rad/sec, while the motion of link 2 is such that it re
mains always in the horizontal position. This is assumed to be 
achieved by the joint moments. Weights of the bodies act in 
the downward direction. 

The generalized coordinates of the system are the joint rota
tion coordinates dx and 62 and the elastic coordinates of the 
flexible bodies. The prescribed motions are expressed by two 
constraint equations - first representing the constant angular 
velocity of link 1 local axis and the second the zero-absolute 
angular velocity of link 2 local axis —whose general expres
sions are given by equation (4l). Hence, the second constraint 
involves also the elastic coordinates of link 1 in addition to the 
joint rotation coordinates. 

The properties of the links are: Lx = 0.8 m, Ax = 0.0004 
= 2.512 kg,/, = 5.333 x 10" i4 ,L2 = 0.8 m,A2 

= 0.0004 m2,m2 = 2.512 kg, I2 = 1.333 x 10"8m4. 
Initially, 8l = d2 = 0. The system is simulated for one com

plete revolution of link 1, for the cases when link 1 is con
sidered rigid and when both links are considered flexible. Four 
elements and two modes were used. The tip deflections of link 
2 in the local axis n2 are given in Fig. 7. 

5 Discussions and Conclusion 

The new procedures outlined in this paper contained the 
following features: An extended form for the partial velocity 
arrays to include the kinematics of the flexible bodies. They 
are strictly composed of submatrices and, hence, they are 
suitable for computer implementation. From searching in the 
literature, only Huston et al. (1978) have been successful in 
developing the partial velocity arrays in a consistent form, but 
those were only for rigid body dynamics. One of the most at
tractive features of these arrays is the role that they play in the 
formulation of the equations of motion. They form the basis 
of our analysis. 

The nonlinear geometric stiffening is automatically incor
porated through the proper formulation of the strain energy. 

A recursive (direct path) approach with relative rigid body 
generalized coordinates has been adopted to eliminate the 
need for specifying separate constraint equations describing 
the joint connections. In addition to the computational advan
tages, this is especially useful for robotics and space 

mechanism applications. Selection of joint types, and specify
ing the joint forces and moments or determining the joint 
forces and moments arising from other external effects, can be 
done easily without additional effort. 

Body reference frames relative to which the deformation of 
the body is defined and which, in general, are not permanently 
attached to any point in the body are used. This allows selec
tion of any boundary conditions at the connection points to be 
imposed by physical considerations. 

Closed loops and prescribed motions are included via the 
constraint equations. The pseudo-uptriangular method 
automatically generates the orthogonal complement array re
quired for reduction, even when the constraint equations 
become instantaneously linearly-dependent. 

A consistent mass approach is used for exact consideration 
of the inertia forces. The flexible bodies may have arbitrary 
shapes. For this purpose the corresponding shape functions 
and structural stiffness matrices need to be used. 
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Formulation of a Basic Building 
Block Model for Interaction of 
High Speed Vehicles on Flexible 
Structures 
In traditional analyses of vehicle/structure interaction, especially when there are 
constraints between vehicle masses and the structure, vehicle nominal motion is 
prescribed a priori, and therefore unaffected by the structure flexibility. In this 
paper, a concept of nominal motion is defined, and a methodology is proposed in 
which the above restriction is removed, allowing the vehicle nominal motion to 
become unknown, and encompassing the traditional approach as a particular case. 
General nonlinear equations of motion of a building block model, applicable to 
both wheel-on-rail and magnetically levitated vehicles, are derived. These equations 
are simplified to a set of mildly nonlinear equations upon introducing additional 
assumptions - essentially on small structural deformation. An example is given to il
lustrate the present formulation. 

1 Introduction 

In recent years considerable interest has been developed in 
implementing energy-efficient, high-speed, low-noise systems 
for airport-city or intercity transportation - in particular, the 
magnetically levitated (Maglev) vehicle systems (cf. Eastham 
and Hayes (1987)). Currently, to ensure success of Maglev 
systems, guideway structures must be designed to be stiff so 
that deflections remain within narrow margins of tolerance. 
The cost of a stiff guideway structure can easily exceed 70 per
cent of the total cost of a system (Zicha (1986)). More flexible 
guideways are less expensive, but present complex vehi
cle/structure interaction.1 The interaction between high speed 
moving vehicles and flexible supporting structures is the focus 
of the present paper. Even though the impetus behind this 
work is geared toward high speed vehicles, the problem of 
moving loads does find applications in various fields of 
engineering (cf. Fryba (1972), Blejwas et al. (1979)). Extensive 
lists of references on the subject of moving loads over elastic 
structures are contained in the classical monograph by Fryba 
(1972), and in several review papers, e.g., Kortum and 
Wormley (1981), Ting and Yener (1983), report of Subcom
mittee on Vibration Problems (1985) and Kortum (1986). 

Progress in suspension control technology will make possible the use of flexi
ble guideways, and the efficiency of Maglev systems will increase with advance 
in superconductor research. 
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Applied Mechanics Division, January 27, 1988; final revision, August 23, 1988. 
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Formulation of vehicle/structure interaction for wheel-on-
rail vehicles, or for electromagnetic Maglev vehicles with tight 
gap control, leads to a complex system of equations of mo
tion. This complexity stems mainly from the constraints be
tween moving masses and the flexible structure, and from the 
existence of convective terms, which are important for high 
speed regimes. Such problem does not arise for vehicle models 
connected to the structure via suspension systems where there 
are no constraints between moving masses and the structure. 
In addition, efficient numerical algorithms must be developed 
to deal with the resulting complex system of equations of mo
tion; analytical solution (for simple cases) is possible only 
when convective terms are neglected (e.g., Stanisic (1985)). So 
far, research effort has been based on the assumption that 
vehicle nominal motion is known a priori (e.g., Ting, Genin 
and Ginsberg (1974), Venancio-Filho (1978), Olsson 
(1985-1986), and Wallrapp (1986)). Since mathematical 
models in these work require prescribed vehicle nominal mo
tion and do not admit driving forces, there is no possibility to 
study effects of structure flexibility on vehicle nominal mo
tion, or effects of applied accelerating or braking forces on the 
vehicle/structure system. We have not come across any 
reference where the assumption of known vehicle nominal mo
tion is not used. 

We propose herein a methodology to analyze the complete 
vehicle/structure interaction, valid for high speed regime, 
without resorting to the usual assumption of known nominal 
motion. This general setting clearly includes the case where 
nominal motion is prescribed a priori. The scope of this paper 
is restricted to a basic model of planar motion of a rigid wheel, 
or a Maglev magnet unit with tight gap control, moving over a 
flexible beam. Energy dissipative mechanisms are not con
sidered here. The present prototype model serves as a basic 
building block for more complex vehicle/structure models. 

Journal of Applied Mechanics JUNE 1989, Vol. 56/451 

Copyright © 1998 by ASME
Copyright © 1989 by ASME

  Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



We note that the wheel model also finds application in electro-
dynamic (repulsive) Maglev vehicles since these vehicles move 
on wheels up to a maximum lift-off speed of about 80 km/h 
(Alscher et al. (1983)). Further, both high speed Maglev 
vehicles and wheel-on-rail vehicles may possibly run on the 
same bivalent guideway structure. 

Nonlinear equations of motion of the basic model, valid for 
large deformation of the beam, are derived for a class of 
general (nonlinear) contact constraints via Hamilton's princi
ple of stationary action.2 In the present work, structural 
response in the small deformation range is, however, our main 
interest. With assumptions of small deformation, the 
nonlinear equations of motion are then reduced, in a consis
tent manner, to a system of mildly nonlinear equations. This 
consistency is an important feature that distinguishes the pre
sent approach from traditional practice of complete lineariza
tion: Nonlinear terms of physical relevance, essential for 
high speed regime, are retained in the equation for nominal 
motion of the basic model. Finally, an example of vehi
cle/structure interaction at different initial velocities is given 
to illustrate the present formulation. 

Note that the study of dynamic motion of the complete 
system, driven by external forces, as done here, is the only way 
to explain the Timoshenko paradox: Consider a constant 
vertical force traversing, with some prescribed motion, a 
simply-supported beam. Since the net work done by the force 
is zero, where does the energy which leaves the beam in a 
vibratory state after the traversing come from? The same 
question can be asked for a moving mass with prescribed mo
tion. In fact, the "excess" of energy comes precisely from the 
work done by (unmodeled) external forces needed for the vehi
cle to follow the motion prescribed (cf. Maunder (I960)). 

2 Description of Basic Problem 

In this section, we describe the basic problem of planar mo
tion of a high speed moving load - a single rigid wheel or a 
suspended magnet with tight gap control—over a flexible 
beam. Attention is focused, however, to the dynamics of the 
more complex case of a rolling wheel. Several possible models 
of a Magleve magnet ("magnetic wheel") can be obtained 
from this basic model. Recall that the present basic model 
serves as a building-block for more complex vehicle/structure 
models. 

2.1. Basic Assumptions. Let [E,, E2) be orthonormal 
basis vectors, and (X1, X2) the coordinates along these axes. 
These objects define a coordinate system for the material 
(undeformed) configuration of a beam. The line of centroids 
of the beam, of length L and initially straight, is assumed to lie 
along the axis E : ; the coordinate of a material point on the 
line of centroids is denoted by S = X1 € [0, L]. Let (e^ e2 j be 
the set of orthonormal vectors spanning the spatial (deformed) 
configuration, and conveniently chosen such that E, = e,, for 
/' = 1,2. The displacement of a material point S is denoted by 
u (S,t) = ua(S,t)ea,

3 where t € [0, + oo) is the time parameter. 
Consider a rigid wheel with mass M, radius R, and rotatory 

inertia about its center of mass /„,. Let Y (0 = Ya (t) Ea be the 
position of the wheel center of mass in the material configura
tion of the beam; its position in the spatial configuration is 
denoted by y(t)=ya(t)ea. We consider the following general 
form of constraint 

r ( 0 = Y<*(t) + g«(u(Yl(t),t), u,s (Y'(t),t)), (1) 

for a = 1,2, where ga (•,•) are some functions of the structural 

displacement u and its spatial derivative u , s = du/dS = 
(du^/dS)e0, such that ga(0, 0) = 0. We call Y(0, the motion 
of the wheel in the material configuration of the beam, the 
nominal motion of the wheel. Thus, for u(S,t) = 0, we have 
ya(t) = Ya(t). Given the funct ions/ (0 . u(S,t), andg1 (u, u s), 
relation (1) with a = 1 could be taken as a definition of the 
(unknown) nominal motion Yl(t), i.e., Yl(f) is defined to be a 
solution of (1). In this formulation, we consider only the case 
where Y2 = R, for some constant R. Let 6 denote the angle of 
revolution of the wheel, which is considered to be a function 
of the nominal position Yl and the structural deformation 
(u, u, s) . We will often employ the shorthand notation g"(Y] ,t) 
= ga (u(y ' ,0 . u , s (F ' ,0 ) , and similarly with 0(YV) = 
§(YlMY>,t),u,s(Y>,t)).Thm, 

dga dga du13 dga d2ue 

(2a) dS 

dd 

dS 

duP dS du»,s dS2 

86 

~d~S~ 

de due do d2^ 
drf dS duf>,s dS2 (2b) 

2.2 Kinetic Energy and Potential Energy. The kinetic 
energy IK of the basic system (wheel and flexible beam) is 
given by 

JK:=^-M[lYi+g'(Y\t)2 + [g2(Y\t)]2]+-^-Iwie(Y\t)]2 

+ ~TI[OL]A" [lul>i<s^2 + l"2u(S,0]2]dS, (3) 

where the superposed " •" denotes the total time derivative 
(i.e., ('.) = d/dt (•)); ua

u = dua/dt denotes the partial 
derivative of ua in time, and Ap the mass per unit length of the 
beam.4 Now, consider a function / : [0, L] x [0, <x)-~lR, 
smooth enough in both arguments. The first and second total 
time derivatives o f / (S ,0 , evaluated at S= Yx(t), are obtained 
as follows 

/ ( y , y 1 , o = ^ ^ y ' + - a / ( y l ' ° 
dS dt 

(4a) 

/(y.,y.,y,0 = jAg^jH+^.0(^ 
ds dS2 

]2d
2f(Y\t) . , d2f(Y\t) 

dSdt dt2 (4b) 

We will often omit to specify (Yl, Yl) in the argument lists of 
quantities such as / and f, and simply write f(Y\t) and 
f(Y[,t).s Thus, employing (2) and (4) w i t h / = ga to evaluate 
ga(Yl,t) and 8(Y[,t), one obtains an expanded form of the 
kinetic energy (3). The convective terms in (4)- i .e . , the first 
term in (4a), and the first three terms in (4b) - play an impor
tant role in the interaction between high speed moving vehicles 
and the supporting flexible structures, as shown in Blejwas, 
Feng, and Ayre (1979), where numerical results corroborated 
experimental findings (see also Ting, Genin, and Ginsberg 
(1974)). Further, by the assumed smoothness of the function/ 
in (4), total time derivatives and spatial derivatives are inter
changeable, 

dt' 

"_ r»/(y',Q-| _ »' rrf>/(yi,/)-i 
t> I d& J d& I dt' i' U 

The term "contact" is also used here for Maglev magnets with tight gap 
control. 

Throughout the paper, summation convention is implied on repeated in
dices, which take values in 11, 2 j . 

It should be noted that in (3) we do not consider the rotatory inertia of the 
beam cross-section; however, an analysis including this term could be carried 
out following the same methodology presented in this paper. 

This shorthand notation had been used in (3). 
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and thus notation such as f,s(Y
l,t) can be used without 

confusion. 
The wheel is subjected to an applied force F = Faea, and a 

torque Tabout its center of mass. Without loss of generality, 
for the moment, the applied force and torque can be con
sidered constant in time for the purpose of deriving the equa
tions of motion. The work done by the external forces is then 
given by W : = F«y + TO. Further, let \p(u) denote the elastic 
strain energy stored in the beam. The formulation is so far 
valid for large deformation in the beam, and we have not yet 
introduced assumptions of small deformation at this stage. 
Explicit expression of \p(u) for finite deformation of a beam in 
plane motion can be found in Simo and Vu-Quoc (1986). 

3 Derivation of Equations of Motion 

In this section, we derive the equations of motion for the 
basic problem, valid for large structural deformation, by 
employing Hamilton's principle of stationary action. Addi
tional assumptions of small deformation in the structure are 
subsequently introduced to further simplify the equations of 
motion. This simplification process is carefully carried out in a 
manner that is consistent with the assumptions. It should be 
indicated that even though particularized to small structural 
deformation the resulting equations of motion do retain some 
crucial nonlinear terms, for an adequate description of the 
dynamics at high speed regime. 

3.1 The General Nonlinear Equations of Motion. The 
Lagrangian of the system can be written as 

2L(y ' , u ) :=2S : (y 1 , u ) - ^ (n )+^ (y .u ) , 6 (6) 

Consider the time interval [tut2\. Let OKO.TJ'OS.O.*!2 ( S » 0 ) be 
the admissible variations corresponding to the functions 
(y'.i/ ' .K2), and vanishing at time t = tx and t = t2. The equa
tions of motion are obtained from the stationary condition of 
the action integral, i.e., the Euler-Lagrange equations cor
responding to (6): 

— ( IL(Yl+e^,u + er,)dt\ =0, 
de J[«i.'2l U=o 

(7) 

for all admissible variations (i/sij), where i\ = ife,^. It follows 
that the equations for nominal motion Y1 and for structural 
displacement u are, respectively, given by 

d 

~d7 

- ( 
de J[<i,<2l 

[ IL(Yl+e^,u)dt 
Ji'1,'21 

H(Yl,u + erj)dt 

= 0, 

= 0, V admissible (i/>,i?) (8) 

Nominal Motion Y1. We first note that from (4a) one has 

df(Y\Y\t) df(Y\t) 

d dS 

Then, it follows from (9a) and (5) that 

l_ (df(Y\t)\ ^d_ /df(Y\t)\ = df(Yi,t) 

dt \ d ) dt V dS ) dS 

Further, the variation of/with respect to Yl is given by 

d 
-f(Yl+et,t)\ 

de U=o 

df(Yl,t) df(Y*,Q • 
Y + ^ W,' 

(9a) 

(9b) 

(10) 
dS dS 

where we have made use of (4a).7 Next, after evaluation of the 

alleviate the notation. 
Another way to obtain (10) is by interchanging d/de and d/dt, and then us

ing (5). 

directional derivative (8)1; and applying integration by parts 
with the boundary conditions ^(/,) = ip(t2) = 0, we obtain 

d f , I 
--— M(Y[+e^, »)dt 

de J[/i,/2i U=o 

( M 1 + 
Jl'l. '2l V. V 

ag'(y,o 
as 

) [ f + gl(Y\t)] 

3 g 2 ( r \ 0 

d 

~de~ 

+ M^^g^,t) + Iw^^e{r,t)],dt, (lla) 

( W(r+et,n)dt\ = ( [ W l +
a * 1 ( y l - Q ) 

J['i.'2i N=o hn.ti] (- V dS J 

+ F* 
dg2(Y\t) d6(Yl,t) 

dS dS •]* dt, (lib) 

where use has been made of (9) and (10) wi th / = ga to allow 
cancellation of certain terms. The stationary condition (8)! 
and relations (11) yield the equation for the nominal motion 
Y1: 

dg^Y'j) 
W ( 1 + ^ ) [ ? + f ( , i 0 ] 

+ M-

=Fl (l + 

dS 

dg2(r,t) 

dS 
WW.*™^ 

dS 

dg[(r,t)\ dg\Y\t) 36(Y\t) 

dS J dS dS ' 
(12) 

Structural Motion (ul,u2). Similar to relations (9), one 
can prove that the following identifies hold 

9g°(u,u,5) _ dg"(u,u,s) 

d /dga(u,u,s)\ dga(u,u,s) / 9 g « ( u , u , 5 ) \ _ 
dt V duP J drf 

3g"(u,u,5) _ 3g»(n,ii,s) 
difi,s dut,s ' 

d /ag«(u,u)S)\_ag«(u,u,s) d /dg°(u,u , 5 ) \ 

dt \ dul1,, ) 3K" , 

(13a) 

(136) 

(13c) 

(13d) 

Now, computation of the directional derivative in (8)2, and in
tegration by parts with respect to time yield the following 
results 

- — [ IK(Yl,u + er,)dt\ 
de Jin.'ii le=o 

= ( WU{Y\t)d^YXj) 

J['l.'2l <- V- due 

dea ( Y1 t)\ / 
+ ^,s(Y\t) * l

g '') +Iwe\Y\t)[r)^Y\t} 
dd(Yl,t) 

9u»,s 

dO(Y\t) 

>s 

du* 

d r • , I 
— W(Yl,u + er,)dt\ 
de J[fi,<2l lc=o 

-i AH^i^^'W) 
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where we have made use of the (homogeneous) boundary con
ditions of (V, i)1) at t = t{ and t = t2, relation (4a), and the 
identities (13)8. Next, let the weak form of the stiffness 
operator be denoted by G(», •)> and 

G(u,,) = — ^ ( u + 6r/)| , (15«) 
de U=o 

where we recall that vHu) designates the strain energy of the 
beam - see Vu-Quoc (1986) and Simo and Vu-Quoc (1986) for 
an expression of G(u, i/). Therefore, using (8)2, (14) and (15a), 
the weak form of the structural equations of motion is then 
given by 

r deHY1 t) 
i-F'+M[P+gl(Y\t)]] [ y ( y , o a y 

+V,s(y,o dgl
d
(f'°] + [-fg+Mg?(y,f)] 

+ \ Aor>l3(S,t)ul3,ll(S,t)dS+G(u,ri) = 0, V admissible n. 
•W] (15fc) 

The corresponding partial differential equations of motion 
can be easily obtained from (15) by integrating by parts in S, 
and by invoking the fundamental lemma of calculus of varia
tions.9 We prefer, however, to retain the structural equations 
of motion in its weak form for numerical work. 

Remark 3.1. Energy Balance. The balance of system 
energy at time t can be written as follows 

Kt + +t-j'o [F*(T)y<*(T)+T(T)6(T)]dT=lK0 + t0, (16) 

where IK, is as given in (3), \j/t as given in Simo and Vu-Quoc 
(1986); the integral term is the work done by (time-varying) ex
ternal forces. On the right-hand side of (16) are, respectively, 
the initial kinetic energy 1K0 and the initial potential energy 
\p0. The discrete form of the system energy balance (16) has 
proved to be a very useful criterion in the design of reliable 
numerical integration algorithms for the equations of motion; 
see Vu-Quoc and Olsson (1987, 1988a) for the details. • 

3.2 Contact Constraints and Contact Forces. The wheel 
is assumed to be in permanent contact with, and rolling 
without slipping on, the beam.10 Clearly, without structural 
deformation (u(S,t) = 0), the revolution ofthe wheel is related 
to its nominal motion by 6 = Yl/R. Let R (= Y2) denote the 
distance from the beam centroidal line to the center of mass of 
the wheel (Fig. 1). For R=R, the wheel is moving with its cir
cumference tangent to the beam centroidal line. An explicit 
form of the function ga in the general constraint equations (1) 
for wheel/beam contact, or magnet/beam with constant gap, 

We could also obtain these results by making use of the interchangeability of 
d/de and d/dt. 

The containing space of the variations (t/ ,17 ) should be suitably chosen and 
should include the essential boundary conditions at S = 0 and S = L (see, e.g., 
Rektorys (1980)). 

The velocity of the contact point on the wheel is only about one thousandth 
of the velocity of the wheel center of mass (rigid slip); see Kalker (1979). 

Fig. 1 Basic problem: Building block models for wheel-on-rail and 
Maglev vehicles. 

can be written exactly as follows 
gl(u, u,s) = ul-R sinx(u,s), (17«) 

gHu, u,s) = M
2-i?[l-cosx(u, s)], (176) 

where X(u,s): = tan"1 ( " 'f ) , (17c) 

represents the slope angle of the deformed beam (cf. Fig. 1). It 
should be noted that the expressions in (17) are written for 
beam theory without shear deformation, and are valid for a 
finitely deformed beam. 

Remark3.2 "Magnetic Wheel." The above formulation 
encompasses several possible models for a Maglev vehicle us
ing electromagnetic suspension (attractive system) with tight 
gap control.11 By letting /,,, = 0 (or 0 = 0) in the kinetic energy 
(3), we have a model (A) of a moving magnet, where R 
represents the distance from the beam centroidal line to the 
magnet center of mass (Fig. 1). Next, by letting Iw = R = 0, 
in which case the constraints (1) becomes yl(t) = Y'(t) + 
u!(Yl,t) andy2(t) = u2(Yl,i), we obtain yet another model (B) 
of a moving magnet. In practice, often even simpler con
straints are chosen (model C) so that^'(/) = Yl(f) and_y2(/) = 
u2(Yl,t) (cf., e.g., Wallrapp (1986)). Thus, there is no direct 
coupling between vehicle nominal motion and structural axial 
deformation. In this case, the equations of motion (12) and 
(15) (in weak form) simplify to 

M [ f . + i ^ W , o ] ^ + ^ ^ > , (ito) 
ij2(yV)[-/*+MM2(yv)] 

+ { Arf(S,f) u^„(S,t)dS + G(.u,ri) = 0, (18b) 

which are also valid for a finitely deformed beam. In (18), the 
equation for axial displacement and the equation for 
transverse displacement are coupled through the nonlinear 
nature of G (u,ij) for the finite deformation case, m 

In the design of flexible structures under moving vehicles, it 
is important to quantify the (dynamic) contact forces. In par
ticular, these forces are crucial in studying structural response 
to emergency braking of a vehicle. For the basic problem con
sidered herein, let Fc = F%ea be the contact force acting on the 
beam. Once Y1 and u" have been solved for, the contact force 
can be evaluated by Fc = F —My, obtained from considering 
the equilibrium of forces acting on the wheel. Recall that y is 

The gap between a magnet and the guideway is in the range of 10-15 mm, 
independently of vehicle speed (Eastham and Hayes (1987)). See also the review 
paper by Kortu'm and Wormley (1981). 
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evaluated using (1), (17), and with the aid of (4b). In the case 
of a moving magnet, the contact force Fc is the required active 
control force that should be exerted on the magnet to maintain 
a constant gap. 

3.3 Assumptions on Small Structural Deforma
tion. Equations (12) and (15) form the complete set of cou
pled, fully nonlinear equations describing the motion of a 
rigid wheel moving over a flexible beam. In the present work, 
we consider the following additional assumptions to reduce 
the equations (12) and (15) to a mildly nonlinear form: (Al) 
\ua,s\ <<l, for a = 1 , 2 ; (A2) The Bernoulli-Euler 

hypothesis is adopted for beam response, 

+ u2,s(Y\t)u2,„(Y\t)\, 

c1(Y
i,t)«2M[[\-Ru2,ss (Y',t)] lu',Sl(Y\t) 

-Ru\ssl(.Y\t)] + u\s(Y\t)u\st(Y\t)}, 

c2(Y\t)«M^[\-Ru2,ss (Y\t)] [u\ss(Y\t) 

-Ru\sss(Y\t)} + u\s<J\t)u\ss(Y\t)\, 

u) = — \ \EA[u\s^+EI[u\ssf\dS, (19a) c,(Y\t)^M[\-Ru2,ss(Y\t)}2+-W 

where EA is the axial stiffness, and EI the bending stiffness; 
(A3) All nonlinear terms in the displacement ua are neglected 
in the equations for structural motion; (A4) The wheel rolls 
without slipping and with little influence from structural 
deformation, 

R2 

(23b) 

(23c) 

(23d) 

(23e) 

6(Y\t)< 
Yl dd(Yl,t) 1 

R dS -j,e(Y\ty-

d6 
= 0, and 

dO 

Yl 

~R~ 

= 0. 

0(1" ,0» R ' 

- „ , „..„ - „ . (196) 

Note that the aforementioned assumptions are not only 
physically relevant in real operational conditions of the 
system, but carry important implications on the numerical 
treatment as well (see Vu-Quoc and Olsson (1988a)). 

3.4 The Mildly Nonlinear Equations of Motion. Con
sidering the structural equations of motion (15b), assumption 
(A3) implies that we neglect nonlinear terms in ul and u2 in the 
fully-expanded expressions of g1 and of g2 obtained from us
ing (2a) and (4b) in (17). Thus, together with assumption (Al), 
we arrive at the approximations 

gl~V-RQ2,s, g2~u2. (20) 

Note that approximations (20) together with relations (4) when 
applied to g' and g2 imply 

Qi+jgl d-+jul 
-R 

Qi+j+lu2 di+jg2 di+ju2 
(21) 

dS'dP dS'dP " 3Si+idP ' dS'dP dS'dP 

for (i,j) = (1,0), (2,0), (1,1), (0,2). Further, assumptions (Al) 
and (A3) lead to the following approximations 

z°l dg{ 

>s 

dg2 

= 0, 

Ru2,s, 

dg2 

-~-R, 
>s 

du2,s 
~-Ru2,s, 

1 + 
dg1 

•~1-Ru2, 'U2,s, 

(22a) 

(22b) 

(22c) 
dS M dS 

where (22c) are obtained with the additional aid of (21) (or 
(2d)). As a result of (4b), (20), (22), together with assumption 
(A4) (i.e., (196)), the equation for nominal motion (12) can be 
approximated by 

c%(Y\t) Yl+c2(Y\t)(Yi)2 + cl(Y
i,t)Y'+c()(Y

i,t) = 0, 

(23a) 

where 

c0(Y',t)^-Fi[l-Ru2,ss(r,t)]-F2u2,s(Y
l,t)-

T 

~R~ 

+ M[[l-Ru2,ss(Y
l,t)][u\,t(Y

l,t)-Ru2,sll(Y\t)] 

Remark 3.3. Consistency in the Formulation. The 
nonlinear term in g2 in the equation for the nominal motion 
(12) is, according to (20) and (22), approximated by 

9 g 2 ( r ' ° g 2 ( r ' , 0 - «2 ,s( i" M\Yl ,t), (24a) 

which is also nonlinear in u2. Using (4b), we obtain the term 
(24a) in expanded form as given in (23). This term plays an im
portant role in representing the influence of transverse struc
tural displacement on vehicle nominal motion at high speed. 
To see this, we rewrite the equation for nominal motion (18a) 
of Maglev model C, fori71 = 0, as follows 

MY1=u2,s(Y
l,t) [F2-Mii2(Y1,t)] = u2,s(Y

i,t)F2
c(t). (24b) 

At high speed, the amplitude of the vertical contact force F\ 
may significantly exceed that of the vertical force F2. We will 
present next an example with high speed vehicle motion where 
one has \F2.(t) \ > 1.5 | F2 | , for some time t. In other 
words, the inertia force Mix2 could be of the same order of 
magnitude as that of F2, and should be retained in equation 
(23). Hence, it is shown that the formulation would not be ap
propriate for high speed regime, had we systematically re
moved all nonlinear terms in ua from the equations of motion. 
This is a variance with the usual practice of complete lineariza
tion (see discussion in Kortum (1986)), which is therefore in
consistent in the present situation, m 

Now, applying assumptions (A1-A4), the weak form of the 
equations for structural motion, which is linear in the 
displacement ua, is given by 

nl(Yl,t) (-Fl+M[Yl + iil(Y\t)-Ru2,s(Y\t)]) 

-R{P-MPW,s(Y\t)u2,s(Y\t) 

+ j Q i Arf(S,t)u\tt(S,t)dS 

+ \0LEA jj1,s(S,0«1,s(S.0rfS = 0, (25a) 

and 

- ^ 2 , s ( F 1 , 0 ( - i r l +MI*1 +ul(r,t)-Ru2,s(r,t)]j 

+ rt
2(Yl,t)(-F2+Mu2(Y\t)) 

-RF2r,2,s(Y
lJ)u2,s(Y

l,t) + { ^ ( S . O K 2 , * (S,t)dS 

+ j EI v
2,ss(S,t)u2,ss(S,t)dS = 0, (25b) 
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for all admissible variations (rj1, rj2). Next, using the relations 
(4), we can recast equations (25a), (256) to the following ex
panded form 

[Mr,l(Yl,f)(ul,„(Yl,0-Ru1,sll(Y
l,o) 

+ j ArffoQu1 „,(S,t)ds\+2MY^^Y\t) [ H ' . ^ F ' . O 

-Ru\ssl{Y\t)\ + [Mv
1(Yl,f)(Yllul,s(Y

i,0-iiu2,sslY
i,f)] 

+ (Y1)2 [ « 1 , s s ( y 1 , 0 - * « 2 , s s s ( I r t , 0 ) 

-R[F' -MYlW,s{Y\t)u2,s(Y\t) 

+ \ EAr,\s(S,tW,s(.S,t)ds\ =^1(y1 ,/)[F1 -MP], 

and 

[-RMT,\S {Y\t)(u\„{Y\t)-Ru\sll (Y\t)) 

+ Mv
2(Y\t)u2„(Y\t) + j ApV

2(S,t)u2„t(S,t)ds] 

+ 2MF1 [ - ^ i ?
2 , s ( y , , 0 ( « 1 , a ( I r t , 0 - ^ « 2 , s a ( y , , 0 ) 

+ii2(y,,/)«2,»(y1,o] + [My'f-^.scy1 ,/)(«* ,5(^,0 

-^ii2,ss(y,o)+i;2(y1,OM2,s(^.o] 

+M(f')2 [-JRi/
2,s(y

1',o(«1,ss(y
1,o 

- ^ M 2 , ^ (y1,/)) +i?2(y1,o«2.ss(y
1,o] 

+ */V,s(F l ,0«2 ,s(y , ,O + [ £fi,2,ss(S,/)«2,ss(S,Orfs] 
J [0,Z.] J 

= - ^ ^ ( F ' . O t ^ 1 -MP]+r,2(Y\t)F*, (26b) 

for all admissible variations (j;1, r/2), where terms are grouped 
in square brackets according to their nature (mass, velocity-
convection, and stiffness terms on the left-hand side, and ap
plied forces on the right-hand side). Note the geometric stiff
ness character of the term with factor R[Fl - MY1 ], and of the 
term with factor RF2 in the stiffness operators of (26a) and 
(266), respectively. Even though equations (23) and (26) are 
the simplified versions of the fully nonlinear equations (12) 
and (15), according to assumptions (Al) to (A4), they remain 
nonlinear and coupled. Moreover, these equations in spatially 
discrete form are not explicit ordinary differential equations, 
and special algorithms must be designed for numerical com
putation. The system is driven by the initial conditions ( F'(0), 
F'(0), u(S,0), u„ (S,0)] and the forces {F1, F2, T] applied on 
the wheel. 

Remark 3.4. In connection with Remark 3.3, we note that 
the linearized structural equations of motion (266) contains 
the (low order) effect of the contact force F2 = F2 - Mu2 (the 
term Mil2 appears in (266) in expanded form using (46). Thus, 

1.006 

£• 1.002 -

§ 1.000 ^ 

1 0.998 -

a 
o 
Z 
| 0.994 '. 

B 

%• 0.990 . 

0.986 l . i . I . I . i , i , i , l , 

0.0 6.0 12.0 18.0 24.0 

Nominal Position 

Fig. 2 Vehicle/structure interaction at different initial velocities: 
Nominal velocity (normalized wrt initial values) versus Nominal position. 
Solid line: V1(0) = 100 m/s. Dotted line: Y^O) = 50 m/s. Beam length L 
= 24 m 

the contact force F2. is consistently accounted for in both equa
tions (23) and (26). m 

Remark 3.5. With assumptions (A1-A3), equation (186) is 
decoupled into an equation of motion for axial vibration and 
an equation of motion for the transverse vibration. But this 
means that the Maglev model C, unlike models A and B (see 
Remark 3.2), cannot be used to study effects of vehicle ac
celerating or braking on the axial structural response, a 

4 An Illustrative Example 

In this section, an example is given to illustrate the above 
basic model for interaction between a vehicle, starting with 
different initial velocities, and a flexible supporting structure. 
Emphasis is focused on results which are not achievable using 
formulations based on the traditional assumption of known 
vehicle nominal motion. The results, obtained by numerical 
methods, correspond to the set of mildly nonlinear, coupled 
equations (23) and (26). We refer to Vu-Quoc and Olsson 
(1987, 1988a) for details and discussions on the numerical 
algorithms employed in solving these equations. 

Consider a basic model with parameters M = 3000 kg, Iw = 
135 kgm2, R = 0.3 m, R = 0.9 m, L = 24 m, Ap = 1250 
kg/m, EA = 5 x \09N, and EI = 109iVm2. The beam has sim
ple supports at its ends. The wheel is subjected to a constant 
vertical force F2 = - 600,000 N (with F1 = T = 0), whose 
magnitude is about 20 times that of the weight of the wheel 
(acceleration of gravity 9.81 m/s2), creating a maximum 
midspan static deflection of 0.1728 m or about L/140. The 
lowest flexural frequency of the beam is 2.44 Hz; its lowest ax
ial frequency is 20.8 Hz. Initial conditions are set to: Yl(0) 
= 0, u(S,0) = u,,(S,0) s 0 with the origin of S being coinci
dent with the left support. The vehicle moves mainly due to its 
own initial velocity F'(0). 

Nominal Velocity. Figure 2 shows the variation of the 
nominal velocities, normalized with respect to their respective 
initial values (at the entry of the beam) of Yl (0) = 50 m/s and 
100 m/s, as functions of the nominal position Y1. From this 
figure, one can clearly observe a loss in nominal velocity at the 
end of the traversing: An entry velocity of 50 m/s drops by 
1.2 percent at the exit, while an entry velocity of 100 m/s 
drops by 0.7 percent at the exit. The peak-to-peak variations 
in nominal velocity for these two cases are, respectively, 1.7 
percent and 1.0 percent of their initial velocities. These varia
tions ̂ stand in contrast to traditional analyses where the veloc
ity F1 is prescribed to its initial value throughout the 
traversing. 

The drop in velocity is related to a drop in vehicle kinetic 
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Fig. 3 Vehicle/structure interaction at different initial velocities: Ver
tical displacement at contact point (normalized wrt 0.1728 m) versus 
Nominal position. ^1(0) = 1 m/s, 10 m/s, 50 m/s, 100 m/s. L = 24 m. 
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Fig. 4 Vehicle/structure interaction at different initial velocities: Ver
tical contact force FJS (normalized wrt vertical force F2) versus Time 
(normalized wrt traversing time on rigid structure). Solid line: y1(0) = 
100 m/s. Dotted line: ?1(0) = 50 m/s. 

energy, as part of this initial kinetic energy is transferred to the 
beam; we refer to Vu-Quoc and Olsson (1987) for the details. 
This energy transfer, which keeps the beam in free vibration 
after the passage of the vehicle, effectively explains the 
Timoshenko paradox. We note that for a sufficiently long 
multiple-span structure, a vehicle moving under its initial 
velocity, without the aid of any other external force than a ver
tical one, and even in the absence of all energy-dissipative 
force, will experience a continuous drop in velocity as a result 
of this type of energy transfer (examples are given in Vu-Quoc 
and Olsson (1988a,b). 

It is also interesting to note that at very low speed, one has a 
large relative increase in velocity during the traversing. For in
stance, for Y"'(0) = 1 m/s, the increase in nominal velocity is 
about 400 percent, i.e., the maximum velocity is about 5 m/s. 
As a result, the traversing time ( = 9s) is only about one-third 
of the traversing time on a rigid structure (24s). This increase 
in velocity is, however, drastically reduced to about 10 percent 
for F'(0) = 10 m/s (see Vu-Quoc and Olsson (1988a)). 

Structural Deflection. The greater relative loss of velocity 
for ^'(0) = 50 m/s is due to larger vertical displacement at 
contact point, compared to the same displacement for Yl(0) 
= 100 m/s, as recorded in Fig. 3. Also plotted on this figure 
are displacement at contact point for F'(0) = 1 m/s (close to a 
static curve) and for F'(0) = 10 m/s. We note the shift of the 
location of maximum displacement closer to the exit as entry 
velocity increases. 

Contact Force. Recorded in Fig. 4 are time histories of the 
vertical contact force F2, for initial velocities of 50 m/s and 
100 m/s. As noted in Remark 3.2, the inertia force Mu2 is 
non-negligible at high speed: For Yl(0) = 100 m/s, this iner
tia force could reach 60 percent of the vertical force F2 (Fig. 
4). Again, this points to the consistency of the present for
mulation, which is crucial for a high speed regime. 

5 Closure 

We have presented a basic building block model for analyz
ing the interaction between high speed vehicles and supporting 
flexible structures. The present formulation departs complete
ly from traditional practice of assuming known vehicle 
nominal motion. Nonlinear equations of motion for the basic 
model, with a general form of constraints and valid for large 
structural deformation, are derived using Hamilton's princi
ple. Additional assumptions, essentially on small structural 
deformation, are introduced to simplify these equations to a 
mildly nonlinear form. The applicability of the present model 
is demonstrated through an example. In subsequent publica
tions, we will present efficient algorithms to integrate the 
nonlinear equations of motion of the complete vehicle/struc
ture interaction problem, and further results. 
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Unloading Waves in a Plucked 
Hyperelastic String 
The governing equations for the finite deformation plane motion of a hyperelastic 
string are obtained in conservation form. These equations and the corresponding 
jump relations are used to investigate the response of a symmetrically-plucked string 
when it is suddenly released. Similarity solutions, which are valid until the first 
reflection occurs at a fixed end, are obtained for two strain energy functions. 
Justification is given for the use of isothermal strain energy functions. 

1 Introduction 

In a recent paper (Beatty and Haddow, 1985), governing 
equations for the finite deformation plane motion of a 
stretched hyperelastic string are derived and used to obtain 
similarity solutions for a neo-Hookean or Mooney-Rivlin 
string, subjected to a suddenly applied force at one end. In the 
present paper the governing equations are derived in conserva
tion form and a corresponding hyperbolic system of first-
order partial differential equations is obtained. This system 
may be simpler to apply, for certain problems, than the 
equivalent system given by Beatty and Haddow (1985) and we 
use it to investigate the wave propagation which results when a 
symmetrically-plucked string is suddenly released. Similarity 
solutions, which are valid until the first reflection occurs at a 
fixed end, are obtained for two realistic strain energy func
tions, a particular case of the Mooney-Rivlin and a three-term 
function proposed by Ogden (1972), which gives an "S" 
shaped nominal stress-stretch curve for simple tension. 

Numerical schemes such as those proposed by Godunov or 
Glimm (Sod, 1985) can be used to extend the solutions beyond 
the time of the first reflection, and a system of governing 
equations in conservation form is essential for application of 
these schemes. 

The adiabatic approximation is implied in the derivation of 
the system of governing equations. That is, the effect of heat 
conduction is neglected. This is reasonable for rubberlike 
materials, which are poor heat conductors. It is evident that 
some justification for the use of an isothermal strain energy 
function is required, since the adiabatic approximation implies 
that the deformation is piecewise isentropic. In order to in
vestigate the errors which arise from the use of an isothermal 
strain energy function in the plucked-string problem, simple 
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tension of an incompressible hyperelastic solid with strictly en-
tropic elasticity (Chadwick and Creasy, 1984) is considered. 
For realistic values of the material properties for rubberlike 
materials the thermal effects, due to strictly entropic elasticity, 
are not significant in the present problem, provided the max
imum stretch which occurs is not too large, say less than six. 
The effect on the stress-stretch relation of the jump in en
tropy, which occurs across a shock, is neglected if the isen
tropic approximation is used in addition to the adiabatic 
approximation. 

2 Formulation of Problem 

We consider a perfectly flexible, uniform hyperelastic string 
fixed at points xl = ±l0 of the x, axis of a rectangular Carte
sian coordinate system. The reference configuration is taken 
as the unstressed configuration, at temperature T0, which oc
cupies the interval [ - L,L] of the x, axis. The x1 coordinate of 
a particle in the reference configuration is Xe[-L,L], and at 
time t the particle is at place x = x(X,t). 

We consider plane motion in the Oxxx2 plane and at time 
/ = 0; the string is released from the symmetrically-deformed 
configuration given by 

x1(X,0)= -!§-X, x2(X,0)-. -••<c¥) tan 6U (1) 

for Xe[0,L], where 6\ is the angle the string makes with the xx 
axis as shown in Fig. 1. The stretch \x at t = 0 is given by 

A, =A„/cos0, > l (2) 

where \0 = l0/L. If 0<A o<l, the string is slack before the 
deformation (1) is applied, and dl >cos"'(/0/L). After the 
string is suddenly released it is assumed that the subsequent 
deformed shape of the string is symmetrical about the x2 axis, 
consequently only the part Xe[0,L] is considered. 

3 Governing Equations 

We obtain the conservation form of the system of 
Lagrangian governing equations and the corresponding form 
with dependent variables u, v, A, and 0, where u and v are the 
Xi and x2 components, respectively, of the particle velocity, 
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Fig. 1 Deformed configuration at ( = 0 

and 0 is the angle the tangent to the string makes with the x, 
axis. The dependent variables for the system of equations 
derived by Beatty and Haddow (1985) are T, V, A and 0, where 
T and v are the tangential and normal components, respective
ly, of the particle velocity. However, these dependent 
variables, or combinations of them, are not convenient for 
determination of a system in conservation form. 

If s(X,t) denotes the arc length, measured from x = x(0,/) in 
the deformed configuration, the stretch is given by 

MX,t)-
ds 

dX 
(3) 

and it follows that 

9(Acos0) du d(Asin0) dv 

~dX~ dt dX dt 
The string is assumed to be perfectly flexible, consequently, 
the direction of the tensile force P per unit cross-sectional area 
of the string in the reference configuration, is tangential to the 
string. For the present we assume P can be expressed as a func
tion of X only. The nonzero components Sn and Sl2 of the 
nominal stress tensor are given by 

Su=P(A)cos0 and S12=P(A)sin0, 

consequently, the Lagrangian equations of motion are, 

d(P(\)cos6/p0) _ du_ d(P(\)smd/Po) _ _dv_ 
(5) 

dX dt dX 

where p0 is the density. 
The system of equations (4) and (5) is in conservation form 

and may be expressed as 

dG 3H(G) 

dt dX 
= 0, (6) 

where G = (Acos0, Asin0, u, v)T, H = - (u,v,Pcosd/ 
p0,Psin8/p0)

T and a superposed T denotes the transpose. A 
convenient nonconservation form obtained from (6) is 

dQ 

dt 

whereQ = (A,0,u,y)r, 

0 0 

+ A 
dQ 
dX 

= 0 

A = 

-COS0 •sin0 

0 0 A-'sinfl -A~'cos0 

-CL
2cos0 XCY2sin0 

-CL
2sin0 -XCY2cos0 

(7) 

(8) 

(9) 

CL
2 = 

1 dP 

Po d\ Po\ 
(10) 

System (7) is strictly hyperbolic if CL
2>0, CT

2>0, and 

CLT±CT. The eigenvalues of A a r e ± C r and ± C L and if the 
system is strictly hyperbolic, there are four distinct families of 
characteristics with slopes ± CL and ± CT in the X,t plane, so 
that A and 0 are propagated with Lagrangian wave speeds CL 

and CT, respectively, along these characteristics. We use the 
terms longitudinal and transverse wave speeds to describe CL 

and CT, respectively. For the strain energy functions con
sidered in this paper, CL

2>0 and CT
2>0 for all A>1, 

however, CL = CT for isolated values of A> 1. 
Relations along the characteristics are obtained from 

l7 dQ dX 
= 0 on dt dt -a, 

where a = ± CL, ± CT and 1 is the corresponding left eigenvec
tor of A. These relations are not required for what follows and 
we do not obtain them. 

A further conservation equation, the equation of conserva
tion of energy, can be obtained from (4) and (5) and the rela
tion 

P(\,S)=p0 
dU 

d\ 

where U{\,S) is the internal energy per unit mass and S is the 
specific entropy. With the adiabatic approximation this equa
tion becomes, 

d ( (u2 + v2) 

dt 

r (u2 + v2) -) d 
[Po j +p°u\- -QX ( p ( " c o s e + y s m 0 ) ) = ° -

(11) 

(4) If we adopt the isentropic approximation, (11) is not required. 

4 Discontinuity Relations 

Jump relations for discontinuities are given by Beatty and 
Haddow (1985). In this section these jump relations are con
sidered in a different way and in more detail. We use the term 
shock to denote a discontinuity of either A or 0. 

Since system (6) is in conservation form, the jump relations 
across a shock are given by, 

HGJ = [H] (12) 

where the square brackets indicate the jump across the shock 
of the enclosed quantity, and V is the Lagrangian shock 
velocity. Two expressions for V2, 

V2 = [CY2Acos0]/[Acos0], V2 = [<VAsin0]/[Xsin0], 

can be obtained from (12). These are compatible if and only if, 
either, 

(Asin0) + 

(Acos0) + 

(Asin0)" 

(Acos0)-
[CT

2] = 0, (13) 

where the superscripts + and - indicate values ahead of, and 
behind the shock, respectively. It may be deduced from (13) 
that, across a shock, there are three possibilities 0+ = 0 " and 
ICT

2]*0, 0+ =6~ ±TT and [Cr
2]^0, 0+ jt%~ and [CT

2] = 0. 
For the present problem, the possibility 0+ = 0 " ±v is not 
physically admissible, so that a discontinuity with both CT

2 

and 0 discontinuous is not possible. In general [CT
2]=0 im

plies that [A]=0, however, if CL(\C) =CT(\C) for A = AC, 
there is a set, fl, of pairs of values of A, where 

Q=( (X ' ,A")H<A'<A C <A" , C 7 . (X ' )=C r (A") ) . 

If there is a jump in A and (A+ , A~)eQ, a jump in 0 is possible 
across the jump in A. Otherwise, a jump in 0 cannot occur 
across a jump in A and vice versa. If [CT

2] ^ 0 , there are two 
possible shock velocities: VL and VT, the velocities of pro
pagation of discontinuities of A and 0, respectively. It then 
follows from (12) that there are two sets of discontinuity rela
tionships, 
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KJXJcosfl = - [ « ] , VL[\]smO=-[v], 

VL [u] = - [P]cosd/Po, VL [v] = - [P]sin0/po, 

and 

VT\[cos6] = - [ « ] , FrX[sin0] =-[v], 

VT[u] = -P[cos0] / P o , VT[v] = -P{sin8]/p0. 

It follows from (14) and (15) that 

and from (16) and (17) that 

[P] ] 1 / 2 

P„[X]J 

r P y/2 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

Comparison of (10) and (19) shows that VT= ±CT, conse
quently a discontinuity of 6, is propagated along a 
characteristic. 

A further jump relation, 

(u2 + v2) 1 
- + p0 u\ = -[P(ucos6+vsmd] (20) V[PO 

is obtained from (11). Since [/does not depend explicitly on 6, 
(20) gives 

(u2 + v2)~ r ( i r + t r n 
C r ( ) B - — = - [P (ucosd + vsmB], (21) 

across a jump in 6, and with Kreplaced by VL, holds across a 
jump in X. If the isentropic approximation is adopted, (20) 
with p0Ureplaced by Wis not satisfied across a jump in X. 

When [C>2] = 0 and [X]*0, [0]*O, then VL = VT=Vmd 
there is only one set of discontinuity relations, 

F[Xcos0] = - [ « ] , FIXsin6»] =-[v], (22) 

H«] = - [Pcos0]/Po, V[v]=- [Psind]/p0, (23) 

/ P+ \ 1/2 / P~ \ 1/2 

where F= ± (_) = ± (_) . 

5 Constitutive Relations 

We obtain results for special cases of the Mooney-Rivlin 
and three-term Ogden (1972) strain energy functions. The sim
ple tension forms of these strain energy functions are: 

- j a ( x 2 + - ? - - 3 ) + ( l - a ) ( X - 2 + 2X-3) j (24) W--

and W= £J^ (X
f li + 2X-"<' /2- • 3 ) , (25) 

respectively, where ix is the infinitesimal shear modulus, 
0 < a < 1, and 

; = i 

Ogden (1972) has shown that the relation, 

obtained from 

dW 

d\ 

(26) 

(27) 

and (25) gives a close fit with experimental data for simple ten
sion of certain rubbers up to stretches of about 7, when the /*, 
and ai take the values, 

/it,//*= 1.491, ft,//* = 0.003, M 3 / M = - 0 . 0 2 3 7 , 

(28) 

=4 
m 
ii 

10. 

l.b 

2.0 

1.5 

1.0 

0.5 

-

-

/ 

/ 3 term 

y/^'M-R, a=0.e 

i i i i l 

Fig. 2 Nominal stress-stretch relations 

The corresponding relation for (24) is 

P = /x(o: + ( l-a:) /X)(X-l /X2) , (29) 

which, with a = 0.6, gives a close fit with simple tension ex
perimental data for X up to about 3.5. Relation (26) with (28) 
and relation (29) with a = 0.6 are shown graphically in Fig. 2. 

The strain energy functions (24) and (25) give the stored 
elastic energy per unit volume for isothermal simple tension at 
the reference temperature T0. Since we are adopting the isen
tropic approximation, an isentropic stress-stretch relation 
should be used and, if (26) and (29) are used, some justifica
tion if required. In order to investigate this point we assumed 
the string is incompressible and its elastic behavior is strictly 
entropic, as predicted by the Gaussian theory of rubber 
elasticity. Strictly entropic elasticity is a limiting case of 
modified entropic elasticity, which has been shown by Chad-
wick and Creasy (1984) to be a realistic model for rubber like 
solids. If a solid possesses strictly entropic elasticity, stresses 
arise entirely from changes of entropy and the internal energy 
can be expressed as a function of temperature only. The other 
limiting case of modified entropic elasticity is piezotropic 
elasticity. In this case mechanical and thermal effects are com
pletely uncoupled and the use of an isothermal stress-stretch 
relation is exact even for a heat conducting material, since an 
isothermal deformation is also isentropic. 

When nonisothermal simple tension of an incompressible 
solid which exhibits strictly entropic elasticity is considered, 
(27) should be replaced by 

P(KT) = 
T dW 

~T\ dk 

or equivalently by 

P(X,S) = 
dW 

~dk exp 
/ s „ w \ 

(30) 

(31) 

where fi = ri/pCT0, S is the entropy, and C, which is assumed 
to be constant, is the specific heat at constant deformation. 
For strictly entropic or modified entropic elasticity, C depends 
only on T, but if \T-T„\/T0«l, the temperature 
dependence can be neglected. A typical value of the non-
dimensional quantity (3 for rubberlike solidsis/3=10~3 .Inob-
taining (31) the entropy is taken as zero in the reference state, 
so that for isentropic deformation from the reference state, 

a, = 1.3, a2 = 5.0, o 3 = - 2 . 0 . 
P(X,0) = 

dW 

~dk exp (O (32) 
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Xo A 

Fig. 3 Form of deformed configuration for f > 0 and before first 
reflection 

If the string is deformed isothermally to stretch X[ before be
ing released then, for the isentropic deformation, which is 
assumed to occur after release 

P(A,S,) = 
dW 

~~d\ exp 'A + 0-
W 

) • 
(33) 

where 

= -&W{\W(\l)/n, 

and if ISJ/C—/3WV/x I «1, the isothermal relation is a good 
approximation. With (3= 10~3 it can be shown that the max
imum error that results from the use of (27), rather than (31), 
is less than 1.5 percent for stretches up to about 6. There is no 
difficulty in using (31), rather than (27), but this is not done 
since the additional complication is not justified for the range 
of X considered. When a jump in X occurs the deformation is 
piecewise isentropic with a jump in entropy across the shock, 
if the adiabatic approximation is adopted. According to (31) 
this results in a change in the isentropic P, X relation as the 
shock passes. We have verified that for the values of [X] which 
occur across the unloading shocks in the problems considered, 
the error, resulting from neglect of the effect of the entropy 
jump on the P, X relation, is less than 0.5 percent. This 
justifies the use of the isentropic approximation. 

6 Similarity Solutions 
Similarity solutions can be obtained for the motion of the 

string after it is suddenly released from the deformed con
figuration (1). These solutions are valid until the first reflec
tion occurs at X= ±L. For certain values of X0 and dx no 
reflected wave is possible, since the string cannot sustain com
pression. We have already noted that a discontinuity of 9 is 
propagated along characteristics with slopes ± CT in the (X,t) 
plane. Since there is no such characteristic parallel to the t axis 
of the (X,t) plane for X?*l, we seek similarity solutions for 
which the deformed shape is as indicated in Fig. 3, and the 
dependent variables are functions of Z=X/t. A system of or
dinary differential equations, 

dQ 
CA-ZD-J--0. (34) 

where Q and A are given by (8) and (9), respectively, and I is 
the identity matrix, is then obtained. A nontrivial solution to 
system (34) exists, if the only if Z= ±CL or Z= ±CT, and 
since we are seeking solutions which are symmetric about 
X=0, we only consider Z = CL and Z=CT. 

Solutions satisfying (34) and the jump relations consist of 
centered simple waves and/or shocks. Since VT = CT and a 
discontinuity of 9 propagates along a characteristic, it may be 
deduced that the initial discontinuity of 9 at X=0 does not 
result in a centered simple wave, but propagates as a discon
tinuity as indicated in Fig. 3. 

w 
Fig. 4 Form of solution for Mooney-Rivlin Material, <* = 
\l >\c and X3<A, 

0.6, X1 <XC or 

7 Solutions 
It is convenient to introduce the following nondimen-

sionalization scheme, 
- P q - X - CJ 

P=^-. q= •£- , X=—, t= -f- , 

Z = (35) 

3/i 

X X 

where q = (u,v,CL,VL,VT)T and C0 = CL(1) = (3/x/p0)
1/2 is the 

wave speed for infinitesimal amplitude longitudinal waves 
propagating into an undeformed region. Henceforth, we use 
nondimensional variables given by (35) but omit the bars. 

(a) Mooney-Rivlin String with a = 0.6. The nondimen
sional wave speeds obtained from (10) and (27) are 

1 f / . 2 N "^1/2 
CA~ [«(1+xr) + 3<1-«>x-']} 

m'" 
(36) 

(37) 

It is easily shown that CLsCy when \sKc where Xc = 2.473 
for a = 0.6. We obtain similarity solutions which consist of 
three constant state regions in the (X,t) plane, separated by 
shocks Z=VT and Z=VL, where VT and VL are determined 
by Xj and 0,. Equations (34) are trivially satisfied in the con
stant state regions and the jump relations and entropy condi
tions are satisfied across the shocks. The initial values 6{ and 
X0 determine whether VL > VT or VT> VL. First we consider 
the case with VL > VT, as indicated by the X,t plane shown in 
Fig. 4 for Xe[0,L], The following solution is valid if X! <XC or 
if X j > X c and X 3 = X 2 < X „ where X„<XC and 
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x?A ^o^oL 

x0vTt 

Fig. 5 Form of solution for Mooney-Rivlin Material, a = 0.6, Xf > \c and 
X 3 > X , 

C7-(X») = CL(X1), and the subscripts, 1,2,3 refer to the cor 
responding regions indicated in Fig. 4. 

Region 1: X/t>VL\ 

u = v = 0, X = X1) d = 6x. 

Region 2: VL>X/t>VT\ 

u = u2, v = v2, X = X2, 6 = 62 = 61, 

v2 = «2tan0,, 

where the nondimensional longitudinal shock speed, 

^ P ( X 2 ) - P ( X , ) V / 2 

V, (38) 
(X2 -X,) ) 

is obtained from (18) and (29), and 

" 2 = - J / L ( X 2 - X 1 ) c o s 0 1 , ! ; 2 = - K L ( X 2 - X l ) s i n e 1 (39) 

are obtained from (14). 

Region 3: VT>X/t>0; 

v=v3, u = 0, X = X3=X2, 0 = 0, 

where the nondimensional transverse shock speed, 

-m 
is obtained from (19) and (29), and 

u2 = KrX2(l -cos^j), i>3 = VT X2sin51 + v2, (41) 

and are obtained from (16). 
All the unknowns can be determined from (38) to (41) and 

(2) if X0 and 0, are given. 
Next, we consider the case VT>VL, as indicated in Fig. 5, 

for Xe[0,L]. The solution given is valid if X,>XC and 

Region 1: X/t> VT; 

Fig. 6 Regions of validity of solutions for Mooney-Rivlin Material with 
a = 0.6 

U = v = 0, X = X1( 0 = C 

where 

W = -m 
Region 2: VT>X/t>VL; 

u = u2, v = v2, X = X,, 0 = 0, 

u2=-VT\l(l-cosdl), v2= VT\lsin6l 

are obtained from (16). 

Region 3: VL>X/t>0; 

(42) 

(43) 

w = 0, v=v2 = vit X = X3, » = 0 , 

where 

V, (44) 

(45) 

- ( X 3 - X , ) J ' 
is obtained from (18) and (29) and 

u2=VL(\^-\i), 

is obtained from (14). 
All the unknowns can be determined from (42)-(45) and (2) 

if X0 and 0, are given. 
The regions of validity in the (Xo,0,) plane of the aforemen

tioned solutions are shown in Fig. 6. 
For the limiting cases of these solutions as X—X* so that 

VL~VT and Region 2 in Figs. 4 and 5 becomes vanishingly 
small, a solution is readily obtained from jump relations (22) 
and (23). This solution is particularly simple since 
X3 =\t =X0. 

(ft) Three-Term S.E.F. String. The non-dimensional 
wave speeds obtained from (10) and (26) are 

- ; = i 

3 

r=[E-f-(^-2-x-*</2-2 CT = 

where the a, and ??,• are given by (28). Referring to Fig. 7, 
CL>CT, if X<Xcl or X>Xc2, and CL<CT if Xc l<X<Xc2, 

(40) where Xcl = 2.1674 and Xc2 = 3.1674. In Fig. 7, X, = 2.6404 is 
the stretch corresponding to the inflection point of the (P,X) 
curve. Solutions for X, <X; are of the same form as those for 
the Mooney-Rivlin string. We present two solutions, one 
which is valid if X!>X4>Xc2 and one which is valid if 
X, >Xc2>X4>X,-, where X4 is the unloaded stretch. The first 
solution consists of constant state regions 1,3, and 4 and a 
centered, simple wave Region 2, as indicated in Fig. 8, and is 
as follows: 

Region 1: X/ r>C L (X, ) ; 

u = v = 0, X = X,, 0 = 0!. 
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a. n 
a. 
ii la 

4 / y Z=Ci> 3 ) 
' 3 / 

Z=CL(X1) 

X 

X 2 | ^ 0
= X 0 L 

Fig. 7 Nominal stress stretch curve for three-term strain energy 
functions 

Region 2: C t ( y > l / / > C t ( ) i j ) ; 

U = U2=-\ CL(l])dT) COS0!, 

v = v2=-\ Qf r / ) tfijsin.0,, 
J Xi 

* 
= CL(\), 6 = 8-1. 

(46) 

(47) 

Region3: CL(\3)>X/t>Vr(\}); 

u = ui=—\ CL(X) dkcosdi, 

j . X 3 

CL(\)d\ sindu (48) 

Region 4: 

where 

X = X3, 0 = 6i. 

VT(\,)>X/t; 

u = 0, v = vA, X = X4 = X3> 0 = 0, 

(49) y4 = i;3 + KrX4 sin01; 

is obtained from (16). If X0 and 6X are given, the unknowns 
can be obtained from (46)-(49) and (2). As X4 approaches Xc2 

Region 3 shrinks, and for X4 = Xc2 the characteristics bounding 
Region 3 coincide. A small modification to the above solution 
is required. When \ >X c 2>X4>X ; the solution consists of 
constant state Regions 1 and 4 and centered, simple wave 
Regions 2 and 3, as shown in Fig. 9, and is as follows: 

Region 1: X/t>CL(Xl); 

u = v = 0, X = X,, 0 = 0,. 

Region2: CL{\)>X/t> VT(\c2); 

« = « 2 = - \ Ct(T))fif>J COS0,, 
J Xj 

v — v2~~- \ CL(r})dr}sindu 
J Xi 

(50) 

X 
= C£(X), 0 = 0, 

A3VTt 

[A3CL(A3)cos 0-,+Uglt 

k0CL(k,)t 

Fig. 8 Form of solution for material with three-term strain energy func
tion X4 > Xc2 

Z=CL(A4) 

4 / /Z=CL(AC2)=VT(AC2) 
/2 

Z = C L ( \ 1 ) 

X 
x2A ^ o L 

A 4 C L ( X 4 ) t 

[xC2vT(xC2)+u5]t 

XoCjx^t 

Fig. 9 Form of solution for material with three-term strain energy func
tion Xi > Xc2, X; < X4 < Xc2 
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60 - ^ \ X 1 > ^ C 2 \ 
\ > \ 4 > A \ i , > i 4 > * C 2 

^l - \ . \ 
30 - \ ^ \ 

0 I I 1 1 1 1 : Li 1 1 1 
0 1 2 3 4 5 

Fig. 10 Regions of validity of solutions for the three-term strain energy 
function. 

Region 3: VT{\c2)>X/t>CL (X4); 

u = u3 = Ui-\ CL{i))d u = u3" (51) 

- ^ - =CL(X), 6 = 0 

where 

"3" = " [ a CL (r,)dr,cosei - Kr(Xc2)Xc2(l -cosfl,), (52) 

t>3~ = - [ CL (ij)Gfysin0, + VT(\c2)\c2 sinO,, (53) 
j x, 

are obtained from the jump relations (16). 
Region 4: CL(\4)>X/t>0; 

W = 0, t> = u3 = y4, 5 = 0, 

«3- = [ * CL(X)dX. (54) 

If X0 and 0, are given, the unknowns can be obtained from 
(50)-(54) and (2). The region of validity in the (XQ,^) plane is 
shown in Fig. 10. 

Solutions can be obtained in a similar manner when X, and 
X4 are in other regions of the nominal stress-stretch curve 
shown in Fig. 7. The determination of these solutions is 
simplified if it is noted that the solution for X, for the plucked 
string problem, is the same as that for the sudden unloading of 
a string in unaxial simple tension from stretch X, to the final 
unloaded stretch. 

A simple way to obtain solutions is to specify X, and X3 for 
the Mooney-Rivlin string or X, and X4 for the three-term strain 
energy function, then 0, is easily obtained along with the other 
unknowns. 

8 Analogy With Propagation of Waves in Incom
pressible Elastic Half Space 

Collins (1966) has considered the problem of propagation of 
waves in an incompressible elastic half space, when the surface 
is given a uniform motion by the sudden application of shear
ing stress, and has shown that, if the material is isotropic, a 
pair of transverse simple waves or shocks and a pair of circular 
waves can propagate. The transverse simple waves and cir
cular waves are analogous to the longitudinal and transverse 
waves, respectively, of the string problem. The quantities, X, 
P, 6, u, v, in the string problem are analogous to the resultant 
simple shear, shearing stress, polarization angle, and com
ponents of particle velocity, respectively, in the shear pro
blem. Governing equations (6) are of the same form as those 
given by Collins for the shear problem, however, the analogy 
is not complete, since the relationship between the resultant 
simple shear and the shearing stress is an odd function unlike 
the relationship between P and X. Furthermore, Collins con
sidered a strain energy function, which resulted in a strictly 
hyperbolic system with distinct eigenvalues for the whole 
range of simple shear, except for propagation into an 
undeformed region. 

9 Concluding Remarks 

The validity of the deformed configuration shown in Fig. 2 
has been verified experimentally. Experiments were conducted 
on rubber cords with a simple tension relation accurately 
modeled by that for the three-term strain energy function with 
parameters given by (28). Good agreement with the solutions 
given by (38)-(41) was obtained. 

In order to continue the solutions, after the first reflection 
occurs at a fixed end, the Godunov finite difference method 
(Sod, 1985) was used by the authors. This method is based on 
the solution of a sequence of Riemann problem and requires a 
system of governing equations in conservation form. 

References 

Beatty, M. F., and Haddow, J. B., 1985, "Transverse Impact of a Stretched 
String," ASME JOURNAL OF APPLIED MECHANICS, Vol. 52, pp. 137-143. 

Chadwick, P., and Creasy, C. F. M., 1984, "Modified Entropic Elasticity of 
Rubberlike Materials," Journal of Mechanics and Physics of Solids, Vol. 32, 
pp. 337-357. 

Collins, W. D., 1966, "One-Dimensional Non-Linear Wave Propagation in 
Incompressible Elastic Materials," Quarterly Journal of Applied Mathematics 
and Mechanics, Vol. 14, pp. 259-328. 

Ogden, R. W., 1972, "Large Deformation Isotropic Elasticity: On the Cor
relation of Theory and Experiment for Incompressible Rubberlike Solids," Pro
ceedings of the Royal Society of London, Series A, Vol. 326, pp. 565-584. 

Sod, G., 1985, Numerical Methods in Fluid Dynamics, Cambridge Univ. 
Press. 

Journal of Applied Mechanics JUNE 1989, Vol. 56/465 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



J.A.Walker 
Department of Mechanical Engineering, 

Northwestern University, 
Evanston, III. 60208 

Pseudodissipative Systems II: 
Stability of Reduced Equilibria 
In terms of the Lagrange formulation of dynamics, ignorable coordinates are de
fined for the class of "pseudodissipative" mechanical systems. Reduced equilibria 
(steady motions) of such systems are defined and studied with regard to their 
stability properties. We obtain broad results and results readily applicable to specific 
technical problems. 

1 Introduction 
The study of stability of steady motions of mechanical 

systems seems to have begun with (Routh, 1860). Utilizing 
Lagrange's formulation, E. J. Routh noticed that certain 
generalized coordinates may be "ignorable" and steady mo
tions often correspond to equilibrium values of a "reduced 
state." This work has been continued by many others, and 
considerable recent interest has centered on the difference be
tween the stability properties of "free systems" and those of 
related "restrained systems" driven by constant-speed motors 
(Hagedorn, 1979; Pascal, 1975; Rumiantsev, 1975). In most of 
this work, friction has been either ignored or treated as an 
afterthought; the general effects of friction and the properties 
of real motors have been given little consideration. 

Our objective is to improve on this situation and provide 
more general stability results. By considering systems which 
are "pseudodissipative" (Walker, 1988), we find that fric-
tional effects influence not only the stability properties of 
"reduced equilibria" but even their number and identities 
(compare examples 4.1-4.2). 

Employing the concepts and definitions of Section 2, we ob
tain in Section 3 both broad results (Theorems 3.1-3.3) and 
simple results (Corollaries 3.1-3.3) regarding the stability pro
perties of reduced equilibria. The theory developed in Sections 
2-3 enables us to study not only the free system of example 
4.2, but also the related "real system" of example 4.1, which 
is of much greater significance. In Section 5 we compare our 
stability conclusions for these systems to stability conclusions 
obtained earlier for the related restrained system (Walker, 
1988). 

2 Notation and Terminology 

Consider a collection of particles observed by some inertial 
observer, and choose n "generalized coordinates" 
(<7i><72> • • • > <7n)=<7 €0C(R", where 0 is some open subset 
of (R"; the dimension n of the generalized position q e(R" need 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED 
MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 47th Street, New York, N.Y. 100017, 
and will be accepted until two months after final publication of the paper itself 
in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME Applied 
Mechanics Division, March 1988; final revision, July 27, 1988. 

not be minimal. We denote by «€(R" the corresponding 
generalized speed; i.e., u(t) = q(t) along motions 
q(-):(R-~(R". The resulting generalized kinetic energy T: 
(R x 0 x (R" - (R and generalized force Q: (R x 0 x (R" - (R" de
pend upon the generalized state (q,u)€6x(R" and possibly 
the current time t€Qi. Any and all kinematic constraints on 
(q,u) may be accounted for by defining a kinematically possi
ble set G(t) CO X (R", consisting of all generalized states (q,u) 
kinematically possible at time /6(R. A C1 -smooth function 
q(-):(R-*<Rn is kinematically possible on [t1,t1) if 
(q(t),q(t))e e(t) for all t Z[tut2). 

Apart from some of the foregoing notation, we depart from 
the classical Lagrange formulation only by assuming that Q is 
explicitly known, continuous, and "pseudodissipative" in the 
following sense: 

Definition 2.1. The generalized force Q will be called 
pseudodissipative if there exists a C1 -smooth function 
t/:(RxOx(R"-(R, affine with respect to its third argument 
H€(R", and another function D-M x 0 x <R" — (R" such that 

£ (M /- ! ; , ) [£) /(^ ,W)- JD /(^ ,y)]<0 (1) 

for all (r ,9,«,i))f(Sx6x(ll"x(R", and along every 
kinematically possible q (•), 

n n 

£ o,(/)e,(^(0,?(0) =X)M0A('><7>(0,<?(0) 
/=1 1=1 

(2) 

for all C1-smooth 5(-): (R-(R" such that (q(t),q(t) 
+ 8(t))zG(t) for all ?€(R. 

U will be called a pseudopotential and the function 
L = T— U will be called the Lagrangian. Due to property (1), D 
will be called the dissipative part of Q. 

The generalized force Q will be called strongly 
pseudodissipative if equality occurs in condition (1) only when 
u = v. Q will be called pseudoconservative if D = 0. 

466/Vol. 56, JUNE 1989 Transactions of the ASME 

Copyright © 1998 by ASME
Copyright © 1989 by ASME

  Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Definition 2.1 was made and discussed earlier (Walker, 
1988). Our presentation here is based on four assumptions, of 
which the first three are as follows: 

(/) A particular initial instant t0 has been chosen, and the 
time interval of interest is [?0,°°). 

(ii) Q is known, continuous, and pseudodissipative on 
[*„,«>)• 

(Hi) For some r<n, the last n — r generalized coordinates 
Qr+i> <7r+2> • • • » Qn a r e "ignorable" in the sense of the 
following definition. 

Definition 2.2. If Q is pseudodissipative, then the last n — r 
generalized coordinates (qr+[,qr+2, • • • , q„) = w€(R"~r are 
said to be ignorable if the following conditions are met with 
q^(g,w)^(RrX(R"--,q=(q1,q2, . . . , qr): 

(a) There exist selections for U and D such that D and 
L = T—Uaxt independent of w €<Rn~r; in particular, there ex
ist an open set Qc(Rr and functions L: (RxOx(R"-(R, D: 
(R x 6 x <R" -(R", such that 0 c 0 x (R"~r and 

L(t,q,u)=L(t,q,u),D(t,q,u)=D(t,q,u), 

fov all (t,q,u)S(RxQx<Rn. 
(b) There exist sets C ( r ) c 0 x ( R " and§,(t,q)C(R"-r such 

that 6 ( 0 = { (q,u) CO X<R" \(q,u)z6(t), w £§,(t,q)},t €(R. 
We say w € (R"~r is an ignorable part of q €flt", ^ efltr is the 

corresponding reduced position, (q,u)£(Rrx(R" is the cor
responding reduced state, and 6(()C(R'x(R„ is the cor
responding reduced kinematically possible set. 

Since our ordering of the generalized coordinates is of no 
physical significance, Definition 2.2 serves to determine 
whether or not any particular generalized coordinate qj is ig
norable. It is possible that r = 0, since the entire generalized 
position q may happen to be ignorable: w = q. In this case, 
there is no reduced position q and the reduced state is merely 
the generalized speed we(R". 

Definition 2.2 is more general than others stated elsewhere 
in the literature (Routh, 1860), which seem to assume that 
C(t) = 0 x (R" and D = 0. Definition 2.2 makes the following 
theory applicable to a larger class of problems. Under assump
tions (ii)-(iii), Lagrange's formulation produces the follow
ing consequence of Newton's second law, which defines the 
dynamically possible motions of our collection of particles. 

Theorem 2.1. If a continuous function (q(-),u(-)): 
<R — (Rrx(R" is dynamically possible on [t0,tf), then for all t 
z[t„,tf), 

(q(t),u(t))Z&(t), u,(t)=q,(t) for /<r , (3) 

and 

- — L(t,q(t),u(t))-D,(t,q(t),u(t))\ (4) 
dq, J 

for all C ' - s m o o t h 8(-): (R-(R" such tha t (q(t), 
u(t)+b(t))zQ(t),t0<,t<tf. 

Our fourth and last general assumption is as follows: 

(iv) For each (q°,u0)€G(t0), there exists a continuous 
solution (.q(-),u(-)):[t0,<»)-<RrX(R" of (3)-(4) such that 
q(t0)=q", u(t0)=u°. Moreover, at each t>t0, (q(t),u(t)) 
depends continuously on (q°,u°). 

Assumptions (i)-(iv) are very mild and will be maintained 
henceforth without further comment. 

Obviously, the simplest type of solution of the reduced mo
tion equations (3)-(4) would be a constant solution, 

(q(t),u(t)) = (qe,ue) for some fixed (qe,ue)Z (R'xCR"; the 
corresponding initial reduced state (qe,ue)£&(t0) is called a 
reduced equilibrium. Since r < « by assumption (Hi), each 
reduced equilibrium corresponds to a family of steady mo
tions q(-):[t0, oo)—(R" parameterized by the initial values of 
the n — r ignorable coordinates. 

Corollary 2.1. If L is time-invariant, then (qe,ue)€ 
(Rr x <R" is a reduced equilibrium if and only if uf= 0 for each 
/< rand , foralI />? 0 , (qe,ue)d Q(t) and 

°= H MO k— L(t0,cf,W) + D,(t,q*,u*) (5) 
/= i L oq/ J 

for all C'-smooth S,(-): <R~<R" such that (qe,ue + b(t))t 
e(t),t>t0. 

If a reduced equilibrium (qe,ue) does exist, we may be in
terested in its "stability properties." In terms of some norm 
| • |„,: (Rm - (R for (R'", we define the open set 

rlh^{(.q,u)i(R'-x(R"\0<\q~q'!\r + \u-ue\n<h), (6) 

and its closure 

rih={(q,u)Z W X&" \\q-q% + \u-u%<h], (7) 

both of which are related to (qe,ue) and parameterized by 
h>0. 

Definition 2.3. Let (q(-),u(-)): [*„,<»)—(R'x(R" denote 
the unique solution of the reduced equations (3)-(4) that cor
responds to a given but arbitrary initial reduced state (q°,u")€ 
Q(t0), and let a particular reduced equilibrium (qe,ue) be con
sidered. The reduced equilibrium (qe,ue) is said to be stable if 
to each e > 0 there corresponds some h > 0 such that the state
ment (q°,u°)£ &(t0)C\r)h implies that (q(t),u(t))Z rje for all 
t>t0. The reduced equilibrium (qe,ue) is unstable if it is not 
stable. 

If (qe,ue) is stable and there exists some h>0 such that the 
statement (q°,u°) € (2 (t0) C\ r\h implies that 

\q{t)-q% + \u(t)-u%,~0 as f-oo, 

then (qe,ue) is said to be asymptotically stable. 

In all of the stability results of Section 3, we shall assume 
that L is time-invariant. At each reduced equilibrium (qe,ue) 
we shall employ four (qe, ue) —related functions defined on 
0x(R": 

G(q,u) = -L(t0,q,u) + £ ] (w,-w?) -r—L(t0,q,u) 

n ^ 

/= I °Qi 

r r j- •. 

J(q,u-,r)= £ E-Mtf-tf/)k—£('<>,$,«) 

-JLHt0,q°,W)], (9) 

T r j- a 

R{q,u$)m £ ^,yil{ul-^)[—-L{t0,g,u) 
i=i j=\ J 

-J-L(t0,q',ue)] 
dUj J 

+ t tyu(9,-<lf)\-^-LU0,g,u)+DjU0,g,u)], (10) 
/=i y=i L«<o 
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i r £ 

H(q,u;A)^ £ £ a , y - — Z ( ? 0 , « 7 , M ) 

- -T^—£(^.«* .«e ) l | . (") 
3« r + y J I 

where T = [7,-,] is an arbitrary real r x r matrix and A = [a,-,] is 
some real (n-r)x(n-r) matrix such that 

YtaijDr+j(t,q,u)=0, e ach />0 . (12) 

j=i 

forall(<j,«)eOx(R", t>t0. We define n x n matrices 

r f I 0 1 r O | 0 " i 
T= , A= . (13) 

I 0 \ A i I 0 \ A i 
We shall also employ the (qe,ue)-related set JJA of (6), the 

subset 

0* = {($,«)€ tih\G(q,u)<G(q:u*)}, (14) 

and another (qe,ue)-related set 

3C(A) = [(q,u)tGx(R" \H(q,u;A) = 0) (15) 

parameterized by the (n — r) x (n — r) matrix A. 

3 Stability Results for Reduced Equilibria 

The following Theorems 3.1-3.3 are based upon Definitions 
2.1-2.2 and assumptions (i)-(iv) of the foregoing Section 2. 
Although quite complicated, Theorems 3.1-3.3 lead to the 
much simpler (and more restricted) Corollaries 3.1-3.3. 

Theorem 3.1. Suppose that (qe,ue) is a reduced 
equilibrium and the following conditions hold for some h > 0: 

(a) r\hC\Q(t) is time-invariant and the statement 
(<7,H)e r)ftn &(t0) implies that both (q,ue)£ &{t0\ and (5) 
holds with b(t) =u-ue. 

(b) L is time-invariant and D(t,q,ue) = D(t,qe,ue) for all 
(t,q) w i th |<7 -q%<h, t> t 0 . 
„ (c) G(q,u)>G(qe,ue) foral l (q,u)€ ij„ f~l C(f0)> where 
Q(t0) denotes the closure of C( t 0 ) . 

Then (qe,ue) is stable. If Q is pseudoconservative 0 = 0), 
then (qe,ue) is «o/ asymptotically stable. 

Suppose that the following condition also holds: 

(d) D is time-invariant and there does not exist a solution 
( ? ( • ) , M ( - ) ) : [ ' O . 0 0 ) - « ' ' X « " of (3)-(4) along which 
(a(t),u(t))£ t)h,G(q(t),u(t)) is constant, and 

n 

'£[ul(t)-u
e][Dl(to,q(t),u(t))-Dl(to,q

e,ue)] = 0. 
i={ 

Then (qe,ue) is asymptotically stable. 
If the foregoing conditions («) and (b) hold, (d) holds 

with t\h replaced by Qh, but in place of (c), we have its strong 
contradiction (e). 

The set Qt (~)Q(t0) is nonempty for every e>0, then (qe,ue) 
is unstable. 

Sketch of proof. Under assumptions (a)-(b), we con
sider some solution (<?(•), u(-)):[t0,oo)~(Rrx(R" of (3)-(4) 
such that (q(t),u(t))£rih on some interval [t0,tx). Supposing 
for simplicity that «(•) is C1-smooth, and choosing 
5(t)=ue-u(t) in (4)-(5) for t £[t0,t{), we compute that 
(d+/dt)G(q(t),u(t)) = 

n 

Y^[ul(t)-u<j][D(t,q(t),u(t))-Dl(t,q(t),un]^0 

for all t ^[t0,ti). Hence, G is a Liapunov function (Walker, 
l9S0)onrjhr\e(to). 

Condition (c) and a basic Liaponov stability argument now 
imply that (qe,ue) is stable but, if Q is pseudoconservative, 
(qe,ue) is not asymptotically stable. If Q is not pseudoconser
vative, then LaSalle's invariance principle (Walker,1980) leads 
to the remaining asymptotic stability and instability 
conclusions. 

We note that condition (c) of Theorem 3.1 requires that 
(qe,ue) provide a strict local minimum of G over (3 (t0), while 
condition (e) requires that (qe,ue) not provide a weak local 
minimum of G over 6 ( t0) . 

Often condition (d) is not difficult to check. For instance, 
if Q is strongly pseudodissipative and D is time-invariant, then 
condition (d) is satisfied provided that some t\h contains no 
other reduced equilibrium (q° ,u°) with u° = ue. 

A phenomenon called "gyroscopic stabilization," where 
Qe(~)Q(t0) is nonempty for every e>0 and yet (qe,ue) is 
stable, is not predicted by Theorem 3.1. The following 
Theorem 3.2 addresses the possibility of gyroscopic stabiliza
tion of (qe,ue) by further restricting Q(t) and D. In Theorems 
3.2-3.3, q and u are identified with column matrices when this 
is appropriate. 

Theorem 3.2. Suppose that (qe,ue) is a reduced 
equilibrium and the following conditions hold for some h > 0 
and some real (n — r) x (n — r) matrix A which meets condi
tion (12): 

(a) r\hC\Q(t) is time-invariant and the statement 
(q,u)d rihn e(t0) i m p l i e s t h a t ( q,ue ) € Q (t0 ) , 
(q,u + ATv)Z S(t0) for all v €<R", and (5) holds with 
S(t) = u-ue. 

(b) L: is time-invariant and D(t,q,ue) =D(t,qe,ue) forall 
qmth\q-q%<h,t>t0. 

(c) G(q,u)>G(qe,ue) fox &\\(q,u)<i t}hC\ X.(A)C\Q(t0). 

Then (qe,ue) is stable but, if A^O, it is not asymptotically 
stable. 

If the foregoing conditions (a)-(b) hold, but instead of 
(c), we have both its strong contradiction 

(d) The set Q c n3C(^4)ne( /„) is nonempty for every 
e>0, and 

(e) D is time-invariant and there does not exist a solution 
(q(-),u(-)):[t0,<x)-~(Rrx(R" of (3)-(4) along which 
(q(t),u(t))Z Qhr\3C(A), G(q(t),u(t)) is constant, and 

n 

Yl[ul(t)-u
e][Dl(t0,q(t),u(t))-Dl(t0,q\ue)]=Q, 

/ = i 

then (qe,ue) is instable. 

Sketch of Proof. Consider some solution of (3)-(4) such 
that (q(t),u(t))(. r]h on some interval [t0,t}). Due to condi
tions (a)-(b) we find that H(q(t),u(t);A)=H(q°,u°;A) for 
all t€[t0,ti). If ^4^0, H(q°,u°;A)7iH(qe,ue;A) for some 
(q0,u")€ r]€, every e>0 , and it follows from continuity of H 
that (qe,ue) cannot be asymptotically stable. 

The computation made for (d+/dt)G(q(t),u(t)) in the 
proof of Theorem 3.1 remains valid on |Y0,^), so G, H, and 
F^ = G + \H are Liapunov functions (Walker, 1980) on t}hC\ 
Q (t0), for every X e (R. Due to the structures of G and H, con
dition (c) implies that we may choose A>0 so that 
Fx(q,u)>Fx(q

e,ue) for all (q,u)Z r,hn Q(t0). Hence, FK 

and a basic Liapunov stability argument imply that (qe,ue) is 
stable under conditions (a)-(c). 

If condition (c) is violated but conditions (a)-(b) and 
(d)-(e) are met, then G, H, and LaSalle's invariance princi
ple (Walker, 1980) imply instability of (qe,ue). 

There is no reason to apply Theorem 3.2 with , 4=0 . 
Although the choice A = 0 is always possible in (12), Theorem 
3.2 becomes a special case of Theorem 3.1. If A ^ 0 , Theorem 
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3.2 may serve to demonstrate that gyroscopic stabilization oc
curs. Condition (c) of Theorem 3.2 requires only that (qe ,ue) 
provide a strict local minimum of G oyer 0_(to)C\ 3C(A) 
rather than the larger set Q(t0); hence, QeC\ &(t0) might be 
nonempty for every e > 0 and yet (qe,ue) might be 
gyroscopically stabilized. 

Theorems 3.1-3.2 provide conditions sufficient to ensure 
that (qe,ue) is stable, asymptotically stable, or unstable. If the 
dissipative part D is too weak for us to easily check condition 
(d) of Theorem 3.1 or condition (e) of Theorem 3.2, then the 
following instability result may be useful. 

Theorem 3.3 Suppose that (qe,ue) is a reduced 
equilibrium and the following conditions hold for some h > 0, 
some real rxr matrix Y, and some real (n — r) x (n — r) 
matrix A which meets condition (12): 

(a) 0/, fl (3 (0 is time-invariant and the statement 
(q,u) £QhCl Q(t0) i m p l i e s t h a t ( q,ue)e G(t0), 
(d,u + [Y\0]r(q-qe))Z<S(to), (q,u + ATv)£ Q(t0) for all 
v 6(R\ and (5) holdswith b(t) = u-ue. 

(b) D a n d ~L a r e t i m e - i n v a r i a n t , a n d 
D(t0,q,ue) = D(t0,q

e,ue) for all q with \q-qe\r<h, 
(c) Thesetfl enJC(yl)n<3(/0) is nonempty for every e>0 . 
(d) There exists a real number fx > 0 such that 

n 

R(q,u;?)--ii'El(ul-u<!)[DlVo,q,u)-Dl(to,q
e,ue)]^0 

for all(q,u)tQhC\X(A)ne~(t0). 
(e) There does not exist a so lu t ion (q(-), 

u(-)):[t0,o°)-.<Rr x(R" of ( 3 ) - ( 4 ) a l o n g w h i c h 
( g ( 0 , « ( 0 ) € Q » n 3CM), G(q(t),u(t)) and J(q(t),u(t);T) 
are constant, and 

R(q(t),u(t);Y) = 0 

r 

= Yi[ul(t)-un0l(to,q(t),u(t))-Dl(to,q
e,ue)\. 

i=\ 

Then (qe,ue) is unstable. 

Sketch of proof. Consider some solution of (3)-(4) such 
that (q°,u°)£ QhC\X(A) and (q(t),u(t))€Qh on some inter
val [?0)/i), and suppose for simplicity that w(-) is C'-smooth 
on [t„, t!). Due to conditions (a) - (b), the foregoing computa
tions of H(q(t),u(t);A) and (d+ /dt)G(q(t),u(t)) remain 
valid on [t0,tx)\ moreover, the choice b(t) = [t \0]T(q(t)~qe) 
m(4)\eadsto(d+ /dt)J(q(t),u(t);r) = -R(q(t),u(t);T)for 
all t €[r0,?i). It follows that (q(t),u(t))£ QhC\X.(A) for all 
t £[t0J\)- Moreover, G and H are Liapunov functions 
(Walker, 1980) on QhnX(,A)De(t0) and, due to condition 
(d), so is J+ JXG. Under conditions (c) and (e), LaSalle's in-
variance principle (Walker, 1980) now implies that (qe,ue) is 
unstable. 

Often condition (e) of Theorem 3.3 is not difficult to 
check. If condition (d) is strongly satisfied ( > 0 replaces >0 , 
then condition (e) is met. 

Condition (d) of Theorem 3.3 may be weakened somewhat. 
Nonuniqueness of U and Din Definition 2.1 leads to nonuni-
queness of R in (10), and R may be replaced in conditions 
(d)-(e) by many other function R of the form 

R(q,u;T)^R(q,u;T)- £ £ 7</«/k— F{q) - — - Ftf) 
i=\ j=\ Ld1j d1i 

+ t^l-ql)-^]r-F(q)] (16) 

where F:0 —(Rn is any C^-smooth function1. Moreover, the 
open set Qh may consist of two or more disjoint open com
ponents, and Theorem 3.3 remains valid if Qh is replaced by 
any such component which meets conditions (a) and (c). 

Although of more restricted applicability, the following 
Corollaries 3.1-3.3 are much simpler than our basic stability 
theorems. We utilize a number of matrices related to (qe,ue): 
nxn matrices M=[mu], C=[Cij\, C=(C+CT)/2, an rxr 
matrix K=[ky], and an rxr matrix B=[by], which are de
fined as follows: 

mij = d2L{t0^^)/bufiuj, c^-dDiU^q^u^/dUj, 
(17) 

kv-s-d2L(t0,q°;u'!)/dqidqj for/</•, y</-, (18) 

Z?y = a2Z(?0 ,^,Me)/a^,a«y for /<r , y<« . (19) 

We note that M, C, and K are symmetric, while B is not square 
(/•<«); moreover, M a n d C are at least positive semidefinite. 
We define C to be the rxn matrix consisting of the first r rows 
of C. 

In terms of the foregoing matrices, the matrices Y, A, Y and 
A of Section 2, some rxr matrix S = Sr, and some real 
numbers p, v, JX, we also define an r x n matrix S=[SI0] and 
two (r+n)x (r + n) symmetric matrices 

r K I 0 1 r BABT BAM 1 
m^)mlirhrM (BAM)T MAM I (20) 

P(^,P,Y,S,A)^uW(P,A) 
r -YK-KYT Y(B-L-C) + (B-L)YT' 

+ L [ f ( B - E - C ) + ( f i - E ) r 7 ' ] 7 ' YM+MYT + 2nC . " 
(21) 

Proofs of Corollaries 3.1-3.2 are based on estimates of the 
functions appearing in Theorems 3.1-3.3, and have been 
relegated to the Appendix. 

Corollary 3.1. Suppose that (qe,ue) is a reduced 
equilibrium and the following conditions hold: 

(a) e_(t)Drih for all t>t0, some h>0. 
(b) L: is t i m e - i n v a r i a n t and C 2 - s m o o t h , and 

D(t,q,ue)=D(t,qe,ue) for all (/,<?)€ (JtxO. 
(c) Both the nxn matrix M and the rxr matrix K are 

positive definite. 
Then (qe,ue) is stable. If Q is pseudoconservative (£>=0), 

then (,qe,ue) is not asymptotically stable. 

If, in addition to (a)-(c), 

(d) D is time-invariant and C'-smooth, and the nxn 
matrix C is positive definite, 

then (qe,ue) is asymptotically stable. 
If the foregoing conditions (a) , {b), and (d) hold, but in 

place of (c) we have its strong contradiction, 

(e) r > l and det (K)^0, but K is not positive definite, then 
{qe,ue) is unstable. 

Corollary 3.2. Suppose that (qe,ue) is a reduced 
equilibrium and the following conditions hold for some real 
(n — r) x (n — r) positive semidefinite symmetric matrix A 
which meets condition (12): 

In Definition 2.1, notice that the pair (Ufi) can be replaced by (0,D) with 

1=1 eg/ 
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(a) Q_(t)Drih for all t>t0, some/!>0. 
(b) L is t i m e - i n v a r i a n t and C 2 - s m o o t h and 

0(t,q,ue) = D(t,qe,ue) for all q 60, t>tB. 
(c) There exists a real number p>0 such that W(p,A) is 

positive definite. 

Then, (<7c,He) is stable but, if yl ^ 0 , it is not asymptotically 
stable. 

Corollary 3.3. Suppose that (qe,ue) is a reduced 
equilibrium and the following conditions hold for some real 
(n — r) x (n — r) positive semidefinite symmetric matrix A 
which meets condition (12): 

(a) Q(t) Drjh for all t>tQ, some h>0. 
(b) L is time-invariant and C^-smooth, D is time-invariant 

and C1-smooth, and D(t0,q,ue) =D(t0,q
e,ue) for all q 60. 

(c) W(p,A) is indefinite for all real numbers p > 0 . 
(d) There exist real numbers ^ > 0 , p>0, p > 0 , and real 

rxr matrices f,S = ST, such that P(n,v,p,T,S,A) is positive 
definite. 

Then (qe,ue) is unstable. 

If r = 0 and the reduced state is only «6(R", then 5C and B 
are simply ignored in Corollaries 3.1-3.2, Corollary 3.3 is in
applicable, and Corollary 3.2 differs from Corollary 3.1 only 
by its claim that ue is not asymptotically stable for A ?*0. 

Since A = A r > 0 in Corollaries 3.2-3.3, condition (c) of 
Corollary 3.2 is met if and only if qTKq+uTMu>0 for all 
nonzero (q,u)€ (Rr x (R" such that ABTq + AMu = 0; condition 
(c) of Corollary 3.3 is met if and only if qTKq + uTMu<0 for 
some (q,u) such that ABTq + AMu = 0. There is no reason to 
apply Corollary 3.2 withal =0 , a choice which is always possi
ble2; then A = 0 and the simpler Corollary 3.1 will do at least 
as well. However, Corollary 3.3 may be useful whether or not 
A = 0. 

Corollary 3.3 is made complicated by its generality. The 
following comments bear on the problem of making useful 
parameter selections during applications. Comments 3.1 and 
3.3 also are helpful when applying Corollary 3.2. 

Comment 3.1. If Q is pseudoconservative 0 = 0 6 (R"), it 
seems best to choose A = / in (12). If i M o , it seems best to 
choose diagonal (n — r)x(n — r) A=AT>0 with a„ = \ if 
Dr+i = 0, and au = Q, otherwise. 

Comment 3.2. Whether or not A = 0, condition (c) of Cor
ollary 3.3 cannot be met unless r> 1 and K is not positive 
semidefinite. 

Comment 3.3. Since C > 0 , it is often best to choose very 
large /z>0 when attempting to satisfy condition (d) of Cor
ollary 3.3. If C>0 , then A = 0 in (12) and Corollaries 3.2-3.3 
should not be employed, since they say no more than the 
simpler Corollary 3.1. 

Comment 3.4. Our choice of S = ST affects P(n,v,p,t,S,A) 
only through the off-diagonal submatrices in P. Partitioning 
M, B, and C as 

r Af, ! Af, "I - f C, ! C, 1 

where M,, Blt and Cx are rxr matrices, we usually find the 
choice 

S= _L (Bl +Bfi- -J- (CI+CJ) (23) 

to be best, and it can be proved to be best for r= 1. 

Note that condition (12) requires A = 0 if Q is strongly pseudodissipative. 

Fig. 1 Mechanism of Examples 4.1-4.2 

Comment 3.5. Unless K is indefinite, it seems best to 
choose r = / i n condition (d) of Corollary 3.3. 

Comment 3.6. Suppose that r> 1 and K is indefinite. In 
terms of the partitions (22), it seems best to choose f such that 
vK-YK-KTT>Q and vMi+YMl +Mlt

T>0 for some v>0. 
This always can be done3 if Mx > 0 and det(^) ^ 0 . 

Comparing Corollaries 3.1-3.3, we see that Corollary 3.1 is 
the simplest and the only one providing sufficient conditions 
for asymptotic stability. Corollary 3.2 provides a more general 
means of assuring nonasymptotic stability, and Corollary 3.3 
provides the most general means of assuring instability. If 
Q(t)Dr]h for all t>t0, some h>0, this comparison is also 
valid for Theorems 3.1-3.3, respectively. 

Corollaries 3.1-3.3 are much simpler than Theorems 
3.1-3.3, and are employed in the following examples. These 
examples are closely related to, and may be compared with, a 
simpler example in (Walker, 1987). 

4 Examples 

Example 4.1. The housing y of a motor with armature 0 is 
hinged to a clevis £ which is driven about a vertical axis by 
another motor attached to the floor a, assumed to be inertial. 

Suitable f can be explicitly constructed in terms of the solutions (\,g) of the 
eigenvalue problem (\Mt + K)g = 0. 
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(See Fig. 1.) Along motions, bearing friction at B and B' 
creates a torque if ( 0 ( 0 ) on 7 about the horizontal bearing 
axis Ax, where r/tft — (R is C1-smooth, 7y(0) = 0, and 
T}(ue)<0 for all ug€(R. Both motors have strictly declining 
delivered-torque/speed relations. In particular, the C' -smooth 
torques T, (M^) and T2{U^) (delivered to £ and /3 by the lower 
and upper motors, respectively) have strictly negative 
derivatives, include the effects of motor-bearing friction, and 
become zero at known angular rates coj and w2, respectively. 
Axyz is a principal coordinate system for both the armature /3 
and the housing 7 of the upper motor, and C is the mass center 
of this motor. IA will denote the moment of inertial (about a 
vertical axis through A) of the clevis £ (including the lower 
motor armature). 

Choosing 7 + /3 + £ to be our collection and defining 
q = (0,i/s</>) €(R3 = 0 , we see t h a t u=(ue,u^,,ut) 
€ <R\ e(t)=(R3x6l3 for all tz(R, 

T(t,q,u) = — [/,i/? + /2«J sin20 + 73(«| + 2 ^ ^ c o s 0) 

with 

+ (IA+Jicos2B)ul] 

J1 = 7, +11 > 72 = /1 + I2, J3 = 73 + /3 

''/IJO'Z 

"7 , 0 0 " 

0 7, 0 

L 0 O / 3 

» J Axyz 

/ , 0 0 

0 / 2 0 

L 0 0 / j 

and Q is pseudodissipative with 

U(t,q,u) = mgl cos 0, 

D(f,9,W)=[T /(M (1)> T , ^ ) , T2(W0)]€(R3. 

(24) 

(25) 

(26) 

(27) 

Both \j/ and </> are ignorable and we define q = d£(R[ = 0 , 
e ( 0 = (R'x(R3, S(/,0) = (R2, L=T-U, and £=£>. For con
venience, we also define two new parameters 

asuUJi-J2), {=J3aia2-mgl, (28) 

and note that 

d 

Ye 
L(t,6,u) = [ (7 2 - J-i)u\ cos 6-JiU^u^ + mgl] sin 0. (29) 

Since 0 = Ty(0) = T , ^ , ) = T2(C<>2) a n d •£ls time-invariant, Cor
ollary 2.1 shows that there exist at least two physically distinct, 
reduced equilibria 

(0e,we)€ ffi'xfft3, 

(0 e ,« e ) , = (0,0,0), ,C02), (0C ,«C)2 = (TT.O.W! ,0)2), 

and if \a\> If I there exist two more: 

(0e,He)3 with sin 0C>O, f = -<r cos 0e, 

(0C ,MC)4 with sin 6e<0, {=-ocos6e, 

where we = (0, co,, u2). 
At every ide,ue) we find the matrices of (17)-(19) to be 

M--

7, 0 0 

0 72sin20e + /3cos20'' + //j Jjcos 0e 

0 73 cos 0e 73 

>0, (30) 

C=C--

-T/(0) 0 0 

0 - T K « , ) 0 

0 0 -Ti(o02) 

>0 , C = [ - r / ( 0 ) , 0 0], 

(31) 

( 9 e , u e ) 1 

( 9 e , u e ) 2 

( 9 e , u e ) 3 > 4 

»< - lei 
UNSTABLE 

UNSTABLE 

STABLE 

a> kl 
STABLE 

STABLE 

UNSTABLE 

C < - | a | 

UNSTABLE 

STABLE 

C> M 
STABLE 

UNSTABLE 

IMPOSSIBLE 

Fig. 2 Stability table for Example 4.1 

S=[O,(2(72-73)w,cos0e-/3W2)sin0e , -73co1sin de], (32) 

K = ku=(£+o cos 0e)cos ee-asm28e. (33) 

By condition (12) we must choose the 2 x 2 matrix /1 = 0, 
and following the suggestions of Comments 3.4-3.5 we choose 
S = sn =bu - C , , / 2 = T / ( 0 ) / 2 , f = 7 U = l; hence, at every 
(8e,ue) wehaveA = 0, E= [ T / ( 0 ) / 2 , 0,0], 

W(p,A) = 

P(lx,v,p,t,S,A) = 

* 1 1 

0 

0 

M r = 

( K - 2 ) * , 

1 0 0 

0 0 0 

0 0 0 

0 612 6,3 

0 ^M+rM+iwrT + 2Atc 

We note that H^and P are independent of p. If kn < 0, then R7 

is indefinite and P is positive definite for v = 1 and sufficiently 
large ft>0, since T,'(O),) and T'2(W2) are negative numbers. 

At (0e,Me), we have 0e = O and A:,, = <7+f, so Corollary 3.1 
implies stability for a + f > 0 , while Corollary 3.3 implies in
stability for ff+f<0. 

At (6e,ue)2 we have de = it and kn =0-$, so Corollary 3.1 
implies stability for a> f and Corollary 3.3 implies instability 
for (j<f. 

At both (0c,we)3 and (0e,we)4 we have sin 0C^O, f + a cos 
0e=O, and ku = -a sin20E. Hence, Corollary 3.1 implies 
stability for <r<0 while Corollary 3.3 implies instability for 
<7>0. 

The foregoing results are summarized in the table of Fig. 2, 
but more can be said if more is known about the frictional tor
que at the bearings B — B'. If T / ( 0 ) < 0 , then C > 0 , each claim 
of "stability" is strengthened to "asymptotic stability," and 
all conclusions can be obtained from Corollary 3.1; Corollary 
3.3 is not needed. 

Example 4.2. We modify Example 4.1 by supposing that 
both motors always deliver exactly zero torque: 
T, (x) = 0 = T2 (x) for all x €(R. Now Corollary 2.1 yields four 
distinct families of reduced equilibria parameterized by 
(u%,u%)i (R2 but all having u% = 0: 

( 0 C X) , with0e=O, (0c
)t/

e)2with0e = 7r, 

(0e,we)3,4 with sin 0<VO, f = -a e cos 0e, 

where sin 6e > 0 for (de,ue)3, sin 6e < 0 for (de,ue)4, and 

o« = | M J I 2 (7 3 -7 2 ) , r^JjuM-mgl. (35) 

At every reduced equilibrium (de,ue), the matrices (30)-(33) 
of Example 4.1 are valid when modified by the substitutions 
(CT,f,a),,a>2,T,'(co,), T ^ ) ) - ^ , ^ , " ^ ' 0 ' 0 ) - However, con
dition (12) now allows us to choose the 2 x 2 matrix A = 1. 
Choosing Sand t as before, we have T=I, L= [T/ (0) /2 , 0, 0], 
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A = 

0 0 0 

0 1 0 

0 1 0 

W(p,A) = 
kn+p(b2

n + b2
n) 

(PBM)T 

pBM 

P(ii,v,p,t,S,A) = vW(p,A)+2 
-k. 

M+pMAM 

B 

M+nC 

Defining another (0e,ue)-related parameter 

Xe = kn + (mnb\2 - 2m23bl2bn + m22b
2
n)/(m22mi3 - m2

3), (36) 

we find4 that W(p,A) > 0 (for sufficiently large p>0) if and 
only if Xe>0. If \e<0, then not only is W(p,A) indefinite for 
a l lp>0 , but also P(0,0,0,t,S,A)>0. Note that \e>kn. 

At any reduced equilibrium in the family (de,ue)l we have 
6e = 0, bl2=0 = b}i, and kn=oe + ? = \e. Hence, Corollary 
3.1 implies stability for oe + £e>0 and Corollary 3.3 implies 
instability for oe + ? <0 . 

At any reduced equilibrium in the family (8e,ue)2 we have 
ee = v, bl2 = 0 = bn, and ku = <7E-fe = Xc. Hence, Corollary 
3.1 implies stability for oe>£e and Corollary 3.3 implies in
stability for <f<^. 

At any reduced equilibrium in the families (de,ue)3 and 
(6e,ue)4 we have sin 0 e * O , £e + oecos 8e=0, and 
kn = -aesm26e <\e. Hence, Corollary 3.1 implies stability 
for cre<0, Corollary 3.2 implies stability for XC>0 (even if 
ae>0)s, and Corollary 3.3 implies instability for Xe<0. 

Our results are summarized by the table of Fig. 2 with the 
substitution (o",f)—(o^.f) and the following exception: If 
ae> If*I, then a reduced equilibrium in the families (6e,ue)i4 

if stable if Xe>0 (and unstable if Xc<0). Since A^0, Cor
ollary 3.2 implies that no claim of "stability" can be 
strengthened to "asymptotic stability," even if T / ( 0 ) < 0 . 

5 Concluding Remarks 

Despite the complexity of Theorems 3.1-3.3, the simpler 
Corollaries 3.1-3.3 have been found to be both teachable and 
worthwhile in a graduate course on advanced dynamics. 

Example 4.1 employs a pair of realistic motors, whereas the 
zero-torque motors of Example 4.2 cannot be built (due to 
friction). For the "free system" of Example 4.2, gyroscopic 
stabilization occurs for reduced equilibria in the families 
(6e,ue)}Aiiae> If6! and Xe>0; it does not occur for the "real 
system" of Example 4.1, where the torque/speed relations are 
strictly declining. 

Another idealization of Example 4.1 was considered in 
(Walker, 1988); there both motors were assumed to be con
stant speed ( M ^ S W , , U$ = O}2), the generalized state was 
(q,u) = (d,ue)£ (R2, and stability of generalized equilibria 
(0e,O)€ (R2 was studied in (R2. Although stability of reduced 
equilibria is studied with respect to (0,Me,M^,,«0)e <R4 in Exam
ple 4.1, our stability conclusions for Example 4.1 are other
wise identical to those obtained in (Walker, 1988) for the 
"restrained system". We note that true constant-speed motors 
do not exist. 

See the second paragraph following Corollary 3.3. 

Although (36) is very complicated for (6e,ue)i4, it can be shown that \ e > 0 
for every member of these families if J2 > 73. 

These results suggest that constant-speed approximations of 
real motors with sharply declining delivered torques may be 
less misleading than zero-torque approximations of real 
motors with slowly declining delivered torques. However, Ex
ample 4.1 demonstrates that neither type of approximation is 
necessary or desirable. The realistic Example 4.1 is much 
easier than the free Example 4.2, which has many more re
duced equilibria and somewhat different stability properties, 
and Example 4.1 is only slightly more difficult than the 
restrained example of (Walker, 1988). 
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A P P E N D I X 

Proof of Corollary 3.1 
Condition (b) implies that 

G(q,u)-G(qe,ue) (u-ue)TM(u-ue) 

~ ~Y {q-qe)TK{q-qn 

<0(\q-qe\2 + \u-u%). (37) 

If M and K are positive definite, this estimate implies that 
G(q,u)>G(qe,ue) for all (<?,H)€ -nh with sufficiently small 
h>0. Hence, our current conditions (a)-(c) assure the 
satisfaction of conditions (a)-(c) of Theorem 3.1. On the 
other hand, if r> 1 and K is not even positive semidefinite, 
(37) implies that the set fie is nonempty for every e>0 . 

If D is time-invariant and C1-smooth, it follows from con
dition (b) that 

£ iu,-u1)[Dl(t0,q,u)-Dl(t0,q',u*)] 

+ (u-ue)TC(u-ue) \<o(\u-ue\2
n) (38) 

for all(g,w)6 t]h, some/i>0. If C > 0 , this estimate implies 
n 

^£(ul-t^)[D,(to,q,u)-Dl(to,g',W)]<0 
/ = i 

for all (<?,")€ t\h with h sufficiently small and u^ue. We also 
find that if det(^) ^ 0 , then conditions (a)-(b) and result (5) 
imply that (qe, ue) is isolated from all other reduced 
equilibria (q°,u°) with u° = ue. 

We see that our current conditions (a)-(b) imply satisfac
tion of the corresponding conditions (a)-(d) of Theorem 3.1. 
Alternatively, under our current conditions (a), (b), (d), 
and (e), our estimates imply that the corresponding condi
tions of Theorem 3.1 are met. 
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Proof of Corollary 3.2 

Since A=AT>0, (13) implies A = A r > 0 ; hence (11) and 
(15) imply 

0<L[M(u-ue)+BT(q-qe)]TA[M(u-ue) 

+ BT (g-g')]<o(\g-ge\2
r + \u-ue\l) (39) 

for all (q,u)€ 3C(A). Combining this estimate with (37), we 
find that our current conditions (a)-(c) imply that conditions 
(a)-(c) of Theorem 3.2 are met. 

Proof of Corollary 3.3 

Clearly, we need only show that our current conditions 
{a)-(d) imply the satisfaction of conditions (c)-(e) of 
Theorem 3.3. Combining (37) and (39), our current condition 
(c) implies that QtCi3C(A) is nonempty for every e>0 . 
Moreover, our definition (13) of T implies 

l2R(g,u;T)-(u-ue)T[(TM+MrT](u-ue) 

+ 2(TB + BTT-tC)(q-ge)] 

+ (g-q<)T(YK+KrT)(q-qn\^o(\q-g'fr + \u-u<\l) 

(40) 

for all (<?,«)€ 3C(A). B may be replaced by B — L in this 
estimate, for arbitrary rxr S = ST, if R is replaced by some 
"equivalent" R (see equation (16) with F{g) = gTSq/2). 

Combining all estimates (37)-(40), we find that our current 
condition (d) implies n 

v[G(q,u)-G(ge,ue)]+R{g,u;f')-iJ.'£l(ul-^)[D,(t0,q,u) 
/ = i 

-D,(.to,q',W)]>0 

for all (<?,«)€ i?/,C\3C(A), some h>0. Since p>0 and 
G(q,u)<G(ge,ue) for all (g,u)Z Qh, it follows that condi
tions (d)-(e) of Theorem 3.3 are met. 

ERRATA 
Errata on "On the Certain Refined Theories for Plate Bending," by K. P. Soldatos and published in the December 1988 issue 

of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 55, pp. 994-995: 
On page 995 in the second set of equations (8), the printed fraction "17/24" should read "17/21" . Also, in the first of equa

tions (10), "P" should be "p". 
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On Symmetrizability of Asymmetric Non-
conservative Systems 

Shahram M. Shahruz1 and Fai Ma2 

1 Introduction 
Several researchers have studied nonconservative systems 

whose (linearized) equation of motion is given by 

tiHx(t) + Cx(t) + Kx{t) = / ( r ) , f > 0 , (1.1) 

where for all / > 0 , x(t) is the M-dimensional vector of gen
eralized coordinates, f(t) is the n-dimensional vector of gen
eralized forces, and the coefficient matrices M, C, and K are 
n x n real constant matrices with no specific symmetry or def-
initeness property. For instance, Wahed and Bishop (1976), 
Fawzy and Bishop (1977), and Bishop and Price (1979) have 
studied nonconservative systems represented by (1.1). 

The system (1.1) is said to be symmetrizable if and only if 
there exists a linear change of coordinates 

x(t) = Tq(t), t>0, (1.2) 

such that when (1.2) is applied to (1.1), the system can be 
represented by 

q(t) + Csq(t) + K/}(t) = g(t), t>0, (1.3) 
where Cs and Ks are n x n real symmetric matrices. In (1.2), T 
is an n x n real matrix and q(t) is an ̂ -dimensional vector for 
all / > 0 . The symmetrized system represented by (1.3) can be 
studied more conveniently. Symmetrizable systems have been 
studied by several researchers; for instance, Inman (1983) and 
Ahmadian and Chou (1987) have given conditions under which 
the system (1.1) is symmetrizable. 

In this note, we give a sufficient condition as well as a 
necessary and sufficient condition for symmetrizability of the 
system (1.1). Furthermore, we specify the appropriate change 
of coordinates (1.2) for the symmetrizable systems by giving 
a formula for T. 

Department of Electrical Engineering and Computer Sciences and the Elec
tronic Research Laboratory, University of California, Berkeley, CA 94720. 

Department of Mechanical Engineering, University of California, Berkeley, 
CA 94720. 

Manuscript received by the ASME Applied Mechanics Division, August 25, 
1987; final revision, October 19, 1988. 

2 Symmetrizable Matrices 
It is well known that any real square matrix can be factored 

as the product of two symmetric matrices, one of which is 
nonsingular (see, e.g., Taussky, 1968; Parlett, 1980). Hence, 
any real square matrix F can be represented by 

F = F,Fr, (2.1) 

where F, = Ff and Fr = Fj are real square matrices (Fj denotes 
the transpose of the matrix Fj). The choice of F, and Fr is not 
unique. Having one of the factors positive definite leads us to 
the following definition (see, e.g., Taussky, 1968): A real square 
matrix F is said to be symmetrizable if and only if it can be 
factored as the product of two symmetric matrices such that 
one of them is positive definite. Characterization of symme
trizable matrices has been given by Taussky (1968): A real 
square matrix F is symmetrizable if and only if F has real 
eigenvalues and a full set of eigenvectors. 

For a symmetrizable matrix F, we adopt the factorization 
by Parlett (1980, p. 304); hence, F can be represented by (2.1) 
with either 

or 

F, = SST, Fr = S~TAS-

F, = SAST, Fr = (SS7)-

(2.2) 

(2.3) 

where S is a nonsingular matrix whose columns are the eigen
vectors of F, and A is the diagonal Jordan form of F. By S~!, 
we denote the inverse of the matrix S, and by S~ T, the transpose 
of the inverse of S. By F > 0, we denote the positive definite 
matrix F. 

3 Criteria for Symmetrizability of Systems 
Throughout this note we assume that: 
(yll) M is invertible; 
(v42) M _ 1 C and M_1K are symmetrizable, i.e., 

M-'C = B = B,B„ WMK = C = C,Cr, (3.1) 

where Bb Bn Q, and Cr are real symmetric matrices, and at 
least one of the factors of both B and C is positive definite. 

Having B and C defined by (3.1), we may write (1.1) as 

x(t) + Bx(t) + Cx(t) = M-tfit), t>0. (3.2) 

Inman (1983) has shown that: If C = r M + s K for some 
real numbers r and s, then the system (1.1) is symmetrizable; 
the following theorem generalizes this result. 
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Theorem 3.1. If BC = CB, where B and C are given by 
(3.1), then the system (1.1) is symmetrizable. 

Proof. The matrices B and C are symmetrizable, hence, 
are diagonalizable. Two diagonalizable matrices B and C can 
be diagonalized simultaneously by a single transformation if 
and only if BC = CB (see, e.g., Horn and Johnson, 1985). 
Suppose that BC = CB, and let V denote the matrix whose 
columns are the eigenvectors of C. Applying the change of 
coordinates x(t) = Vq(t), / > 0 , to (3.2) and multiplying the 
resulting equation by V~l, from the left, we obtain an equation 
such as (1.3), in which the coefficient matrices are diagonal. 

It is easy to see that Theorem 3.1 generalizes the earlier result 
by Inman (1983). For, if C = r M + s K, or B = rl„ + sC, 
(/„ denotes the n x n identity matrix) for some real numbers r 
and s, then BC = CB. However, BC = CB does not necessarily 
imply C = r M + S K, for some real numbers r and s (for an 
example see Shahruz, 1987). 

When BC = CB, the (symmetrizable) system (1.1) can ac
tually be decoupled. In general, however, symmetrizable sys
tems need not be decouplable. For this reason, the condition 
for symmetrizability in Theorem 3.1 is rather strong. In fact, 
there are symmetrizable systems for which BC ^ CB; an ex
ample is given later. The following result, which perhaps rep
resents the most general condition for symmetrizability, is due 
to Inman (1983). 

Theorem 3.2. (Inman, 1983). The system (1.1) is symme
trizable if and only if there exists a factorization of B and C 
such as (3.1) with B, = C,>0. 

When the above theorem is applicable the change of coor
dinates (1.2) is identified as x{t) = B)n q(t), t>Q. It is easy 
to see that Theorem 3.2 remains valid if the right factors of 
B and C in (3.1) satisfy Br = Cr>0. In this case, the change 
of coordinates which transforms (1.1) to an equation with 
symmetric coefficients is x(t) = B~l/2 q(t), t>0. 

Now, we seek a necessary and sufficient condition under 
which the symmetrizable matrices B and C, when factored as 
(3.1), have left (right) symmetric positive-definite common 
factor. We make an additional assumption: 

(A3) B and C have distinct eigenvalues. 
By (A2), B and C are symmetrizable, thus we can factor (i) 

both matrices B and C according to (2.2), (if) both matrices 
B and C according to (2.3), and (Hi) one of the matrices B or 
C according to (2.2) and the other one according to (2.3). We 
examine Case (0 in detail. 

Case (/). In this case both matrices B and C are factored 
according to (2.2), i.e., 

B = (UUT)(U-TABU~l), (3.3a) 

C = (K^MK-^AcF- 1 ) , (3.3b) 

where U, (V, respectively) is the matrix whose columns are the 
eigenvectors of B, (C) and AB, (Ac) is the diagonal Jordan 
form of B, (C). We look for nonsingular matrices P and Q, 
so that when they are introduced into (3.3) in the following 
way 

B = (UUTP)(P-}U-TABU~l), (3.4a) 

C = (VVTQ)(Q~iV~TAcV
i), (3.4b) 

the factors of B and C become symmetric, i.e., 

UIFP = PTUUT, (3.5a) 

P-lU-rABU~l = U~TABU-lP-T, (3.5b) 

VVTQ = QTVV, (3.5c) 

Q-W~TACV~X = V-TACV~XQ-T. (3.5d) 

It can be shown that (Shahruz, 1987), P satisfies (3.5a) and 
(3.5b) if and only if 

PTB = BPT. (3.6) 

The matrix equation (3.6) always has a solution for PT (see, 
e.g., Gantmacher, 1959). Since by 043), the matrix B has 
distinct eigenvalues, (3.6) has a solution for PT (and hence P) 
which depends on n arbitrary parameters; this solution is of 
the following form: 

P = U-WLF, (3.7) 

where D = diag (du . . . , d„) is a diagonal matrix with n 
arbitrary real parameters d„ i = 1, . . . , n, on its diagonal. 
Similarly, it can be shown that Q satisfies (3.5c) and (3.5d) if 
and only if 

Q = V-T&VT, (3.8) 

where A = diag (5U . . . , &„) is a diagonal matrix with n 
arbitrary parameters 5„ / = 1, . . . , « , on its diagonal. Sub
stituting P, (Q, respectively) from (3.7), ((3.8)) into (3.4a), 
((3.4b)), we obtain 

B = (UDUT)(U~TD-,ABU-i), (3.9a) 

C = (VAVT)(V-TA-,AcV-i). (3.9b) 

In (3.9), the left factors of B and C are identified as Bt = 
UDLF, and C, = VAV. The factors B, and C, satisfy the 
condition of Theorem 3.2, when UDIF = VAV>Q; since U 
and V are nonsingular matrices, this condition holds if and 
only if 

A = WDWT>0, (3.10) 
where 

W = V~lU. (3.11) 

We denote the rows of PFby p, = [wn . . . win], i = 1, . . . , 
n, and define the row vector p,- 0 pj = [wnwj{ . . . winwJn\. 
We substitute W = [w,y] and D = diag (du . . . , d„) into the 
right-hand side of (3.10), multiply the matrices, and denote 
the resulting symmetric matrix by M = [wty]. Equating A and 
M, we obtain 

n 
bi = m" = X) wv dP ' = ! . • • • , n, (3.12a) 

y'=i 

n 
mU = H wik v/jkdk = 0, i,j=\, . . . , « , ijtj. (3.126) 

* = i 

Therefore the off-diagonal elements of m are zero if and only 
if 

Rd = 0, (3.13) 

where R is an n(n- l)/2 x n real matrix, and d is an n-
dimensional vector given by 

P\ © Pi 

P\ 0 Pn 

Pi © Pi (3.14) 

R = Pl © Pn , d 
dn 

Pn-l 0 Pn 

Now, we give an easy-to-check necessary and sufficient con
dition for symmetrizability of the system (1.1); this condition 
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is similar to that given by Ahmadian and Chou (1987), how
ever, we have arrived at this result by an entirely different 
approach. In the following, a positive vector means a vector 
whose elements are all positive. 

Theorem 4.1. The system (1.1) is symmetrizable if and only 
if there exists a positive vector in the null space of the matrix 
R given in (3.14). 

Proof. Two nonzero diagonal matrices D = diag (d{,. . . , 
dn) and A satisfy (3.10) if and only if d in (3.13) is a nonzero 
vector. A nonzero vector satisfies (3.13) if and only if rank 
R < n. Suppose that rank R<n, then a nonzero d is in the null 
space of R. Since H^is nonsingular, WDWT>Q if and only if 
D>0. The matrix D>0, if and only if d is a positive vector. 
Having WDWT>0, then UDUT>0 and VAVT>0. Therefore, 
B and C when factored as (3.9) have symmetric positive-definite 
left common factor, and by Theorem 3.2 the system (1.1) is 
symmetrizable. 

By Theorem 4.1, in order to check symmetrizability of the 
system (1.1), we first compute W = V~^U, and then R in 
(3.14). Then we determine the null space of R. The system 
(1.1) is symmetrizable if and only if the null space ofR contains 
a positive vector. The null space of a matrix can be obtained 
conveniently by using the singular value decomposition (SVD) 
(see, e.g., Noble and Daniel, 1977) of the matrix. 

When the system (1.1) is symmetrizable, UDLF = VA VT> 0, 
and we can apply the change of coordinates x(t) = Tq(t), 
/ > 0 , with 

T = (VAV7)1 (3.15) 

to (3.2), in order to have a system equation such as (1.3) with 
symmetric coefficient matrices. 

So far we have only considered Case (/), with B and C 
possessing positive-definite left common factor. Of course, B 
and Cmay have positive-definite right common factor instead, 
and there are also Cases (if) and (Hi); all these possibilities are 
studied by Shahruz (1987). Considering all the possible cases 
we conclude that, so long as symmetrizability of the system 
(1.1) is concerned, we only need to check if the matrix R 
satisfies the condition in Theorem 4.1. 

4 Example 
Let the matrices B and C for the system (1.1) be 

B 
9 - 7 

16 - 1 2 
16 - 1 2 

8.5 
r i l 

0 2 
0 0 

on 
l 
3 

(4.1) 

I f l . J-^C, 

The matrices B and C have distinct eigenvalues and, hence, 
are symmetrizable. For this example BC ^ CB. We compute 
A», A^. U, V, W = V~lU, and 

"0.4344 0.0551 -26.8421 
R = 3.0275 -0.1159 -3.6610 , (4.2) 

1.2963 -0.0855 11.5903 

where R is computed using (3.14). We determine the singular 
value decomposition of R. It turns out that one singular value 
of R, namely (T33 = 0. Therefore, the null space of R is one-
dimensional, and the singular vector y3 = [0.2971 7.1448 
0.0195]7". Since y^ is a positive vector, by Theorem 4.1, the 
system (1.1) is symmetrizable. We have D = diag (0.2971, 
7.1448, 0.0195) and A = diag ( 1 , 2 , 4), where A is obtained 
via (3.12a). Using D and A in (3.9), we obtain the left common 
factor of B and C, 

B, C, = 
7 10 8" 

10 18 16 
8 16 16 

(4.3) 

which is symmetric and positive definite; the right factors of 
B and C are symmetric. 

5 Conclusions 
In this note, we considered second-order systems with asym

metric coefficient matrices. We gave conditions for symme
trizability of these systems. Furthermore, we determined the 
appropriate change of coordinates by which the system can be 
transformed to a symmetric representation. We comment that 
asymmetric systems are seldom symmetrizable. However, it is 
important to have criteria for determining symmetrizability of 
such systems and an effective procedure for symmetrizing sym
metrizable systems. 
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is similar to that given by Ahmadian and Chou (1987), how
ever, we have arrived at this result by an entirely different 
approach. In the following, a positive vector means a vector 
whose elements are all positive. 

Theorem 4.1. The system (1.1) is symmetrizable if and only 
if there exists a positive vector in the null space of the matrix 
R given in (3.14). 

Proof. Two nonzero diagonal matrices D = diag (d{,. . . , 
dn) and A satisfy (3.10) if and only if d in (3.13) is a nonzero 
vector. A nonzero vector satisfies (3.13) if and only if rank 
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space of R. Since H^is nonsingular, WDWT>Q if and only if 
D>0. The matrix D>0, if and only if d is a positive vector. 
Having WDWT>0, then UDUT>0 and VAVT>0. Therefore, 
B and C when factored as (3.9) have symmetric positive-definite 
left common factor, and by Theorem 3.2 the system (1.1) is 
symmetrizable. 

By Theorem 4.1, in order to check symmetrizability of the 
system (1.1), we first compute W = V~^U, and then R in 
(3.14). Then we determine the null space of R. The system 
(1.1) is symmetrizable if and only if the null space ofR contains 
a positive vector. The null space of a matrix can be obtained 
conveniently by using the singular value decomposition (SVD) 
(see, e.g., Noble and Daniel, 1977) of the matrix. 
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/ > 0 , with 

T = (VAV7)1 (3.15) 

to (3.2), in order to have a system equation such as (1.3) with 
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So far we have only considered Case (/), with B and C 
possessing positive-definite left common factor. Of course, B 
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(1.1) is concerned, we only need to check if the matrix R 
satisfies the condition in Theorem 4.1. 

4 Example 
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"0.4344 0.0551 -26.8421 
R = 3.0275 -0.1159 -3.6610 , (4.2) 

1.2963 -0.0855 11.5903 

where R is computed using (3.14). We determine the singular 
value decomposition of R. It turns out that one singular value 
of R, namely (T33 = 0. Therefore, the null space of R is one-
dimensional, and the singular vector y3 = [0.2971 7.1448 
0.0195]7". Since y^ is a positive vector, by Theorem 4.1, the 
system (1.1) is symmetrizable. We have D = diag (0.2971, 
7.1448, 0.0195) and A = diag ( 1 , 2 , 4), where A is obtained 
via (3.12a). Using D and A in (3.9), we obtain the left common 
factor of B and C, 
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B and C are symmetric. 
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sT — transverse spacing 
T(z) = function defined in equation (8) 

Ua, = onset flow 
q = magnitude of velocity 

x,y = cartesian coordinates 
z,f = complex variables 

H = doublet strength 
v = kinematic viscosity 

u,v = velocity components in x and y directions 
W = complex potential 

W = complex velocity 

Introduction 
The cross flow over tube banks is important in numerous 

industrial applications, such as steam generation in a boiler, 
or air cooling in the coil of an air conditioner, especially in 
conjunction with heat transfer (Zhukauskas, 1972). In this 
note, analytical expressions have been derived for velocity fields 
in an incompressible flow over an array of tube banks. The 
dependence of the potential flow field (or equivalently, the 
pressure field) on the transverse and longitudinal spacings of 
aligned and staggered tube banks is also demonstrated. We 
first consider a row of ovals. The situation is depicted in Fig. 
1(a), which shows the semimajor axis of the oval to be 0. The 
potential flow field for this can be easily generated by a row 
of doublets with strength, n, aligned with the free stream, Um 

(Fig. 1(b)). The complex potential for this combination is given 
by: 

W(z) = 
M 

2Tr(z-insT) 
+ t/ooZ, where z = x+iy (1) 

Reviewing the long established formula from the complex vari
able theory (for instance, Morse and Feshbach 1953), we have 

- oo poles 

f = complex variable. 

Equation (1) may be rewritten as: 

(2) 

W(z) 
2TT 

S(z) + Umz, 

where S(z) = E 
1 

™ z - is-jti 
(3) 

The formula (2) is utilized to obtain the series S(z) as follows: 

su) - E 1 

Z-lSjfl E Res 
poles 

7T C 0 t 7 f f 
1 

z-isT$ 

(- coth - z + E :~T) • 

Here the poles are at f = -iz/sT and k = 0, ± 1 , ±2 , . . . . 
The last term is nothing but S(z) itself, and therefore, 

S(z) = 
2S; 

coth (irz/sj). 

Combining this with equation (3), we arrive at 

so that 

W(z) = Ua 

W (z) = u — iv --

L4o>t/= 
coth (wz/sT) + z 

/iir 
Ua. 

4s}-Umsmh2(-Kz/sT)_ 

where u = Re (W (z)) and v= -Im(W (z)). The stagnation 
points are z= ±/3, namely W ( ±j3)=0. This latter condition 
yields (i = sT/-w sinh - 1 (ii,ir/4s^Ua)

U2 with which we can elim
inate the parameter, fi. Finally, we arrive at: 

y '. 

O 
O -jx Doublet Strength 

Fig. 1 Row of ovals and doublets 

o p @ 
S T '' „ J 

u„ 

o <&—e 
o o o Fig. 2 Aligned oval bank 

W(z) = Ua -sinh2(TT(3/5r)coth(«/i,
7-) + z 

and 

W'(z)=Ua 1 -
sinh2(7r^/s7-)" 

(4) 

(5) 
sinh2(7rzAr) 

The complex potential used by Gostelow (1963, 1984) in his 
study of cascade airfoils can be obtained as a special case of 
equation (4), i.e., for sT = it. 

Aligned Tube Bank 
The potential cross flow over an aligned tube bank is merely 

an extension of the foregoing analysis in the streamwise di
rection. The geometry is shown in Fig. 2. The complex potential 
of this flow field should be: 

W(z) = - E 
m.n= - ° o 

2n(z-msL-insT) 
+ Uaz 

r- E S(z-msL) + Uaz 
1 _ ImaS 2TT 

IX v i t, -K(z-msL) 
•7— V coth + Umz. 
4sT 

ST 

(6) 

The numbering scheme (m,n) is also shown in Fig. 2. Define 
T(z) as: 

ir(z-msL) 
T(z) = E coth • 

Using equation (2), T(z) can be written as 

T{Z-$SL) Tw = - ERes 

poles 

ITCOtlT^COth 
ST 

(7) 

(8) 

Poles are at f = / ( / = 0 , ± 1 , ± 2 , . . . ) and {=z/sL. It is readily 
found that 
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100-

Fig. 3 Staggered oval bank 

. |.i ( Doublet 
Strength) 

—rgs»~ 

Fig. 4 Distribution of doublets corresponding to Fig. 3 

T(z)=- E c o t h •K(Z~ISL) ST 

— cot irz/sL 
St 

Since the first term is T(z) itself, we obtain the following 
expression for T(z): 

T(z) = (sT/2sL)cotTrz/sL. 

Substituting this expression into equation (7) gives 

and 

W(z) 

W'(z) 

•f- cot — + U„z 

- fXTT 

&s^sin2Trz/st 
+ t/oc 

W'(±P) = 0 yields 
fiir 

8s2
LU„ 

TT0 

Expressing n in terms of /3, we get: 

W(z) = C/< 

and 

— sm2 — cot — + z 
•sz. 

W'(z) = u-iv=U<x 1 -

•? / . 

s in 2 -^ /^ 

sin2TrzAi. 

(9) 

(10) 

It is interesting to see the similarity between equations (4), (5) 
and equations (9), (10), respectively. Another interesting ob
servation is that the potential flow field has no dependence on 
the transverse spacing, sT, when the number of rows becomes 
infinite. 

Staggered Tube Bank 
The staggered tube bank is depicted in Fig. 3 and singularities 

representing the tubes are shown in Fig. 4. The complex po
tential for this flow field can be obtained from the preceding 
result for the cross flow over an aligned tube bank by the 
following replacements in equation (9): 

Fig. 5 Velocity fields at y = 1 for the aligned tube bank; sL = 8/3 and 
U„ = 50 m/s 

Fig. 6 Velocity fields at y = 1 for the aligned tube bank; s t = 3/S and 
M» = 50 m/s 

sL by 2sL, 

sT by 2sT, 

Z by z + c, where c (sL + isT). 

This yields 

fV(z) = u j ^ sin2 ^ 
U 2sL 

cot 
TTZ 

+ COt 

2sL 

ir[z-(sL + isT)] 

2s, + z (11) 

and 

W (z) =u-iv=UJl- sin2 — 
2sL 

CSC2 
TTZ 

2s, 

+ c s c 2 ^ T [z~(sL + isT)] (12) 

Results and Discussion 
The results for the velocity fields in an inviscid flow over 

both aligned and staggered tube banks were obtained from the 
aforementioned expressions. Figures 5 and 6 show the mag
nitudes of the absolute velocity, q= (u2 + v2)l/2, as well as the 
streamwise component, u, for the aligned tube bank case. The 
flow field has a periodicity in sL as should be the case. The 
flow field for the staggered tube bank, on the other hand, has 
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Fig. 7 Velocity fields at y = 1 for the staggered tube bank; sL = s r = 40 
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Fig. 8 Velocity fields at y= 1 for the staggered tube bank; s t = 
S r=50 
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Fig. 9 Strong dependence of C on s t for aligned and staggered tube 
banks 

a weak dependence on the transverse spacing, sT, compared 
with the dependence on sL. This dependence on sTis physically 
feasible since the flow field should have some dependence on 
the protuberances. The variation of the absolute velocity, q, 
and u are shown in Figs. 7 and 8, which clearly show the 
periodicity in 2sL. Grimison (1937) gives the following heat 
transfer correlation: 

Nu0=1.13Ci?e2;m a xPr^ 
7V>10 
2000 <Red<mm< 40,000 
Pr>0.7 

(13) 

where Red Ummd/v and N is the number of rows in the 
tube bank and t/max is the maximum velocity within the tube 
bank. All the properties for the previous correlation are eval
uated at the film temperature. The constants C and m are 

tabulated in (Grimison 1937). Figure 9 illustrates the depend
ence of Con 5 i ( r ) parameters (for sT^) = "id). As can be seen, 
the .^-dependence dominates over the 57-dependence, espe
cially for the aligned tube banks. In actuality the viscosity 
effect, such as boundary layer separation and wake interac
tions, have to be considered in the flow field. Using the ex
pressions for u and v given by equations (10) and (12), the 
pressure gradient along the tube contour can be evaluated. 

Acknowledgment 
Financial support for (YBS) from the Center for Energy and 

Mineral Resources (CEMR), Texas A&M University, is grate
fully acknowledged. We would also like to thank the reviewers 
for their very useful comments. 

References 
Gostelow, J. P., 1963, "Potential Flow Through Cas -.de.5: A Comparison 

Between Exact and Approximate Solutions," ARC CP 807. 
Gostelow, J. P., 1984, Cascade Aerodynamics, Pergamon Press, ). 99. 
Grimison, E. D., 1937, "Correlation and Utilization of New Data on Flow 

Resistance and Heat Transfer for Cross Flow of Gases Over Tube Banks," 
ASME Transactions, Vol. 59, pp. 583-594. 

Morse, P. M., and Feshback, H., 1953, Methods of Theoretical Physics, Part 
I, McGraw-Hill, New York, pp. 413-414. 

Zhukauskas, A., 1972, "Heat Transfer from Tubes in Cross Flow," Advances 
in Heat Transfer, Vol. 8, Academic Press, pp. 93-160. 

Linear Elastic Materials Sustaining a Pre
scribed Deformation 

S. A. Silling4 

Suppose that B is a body and u is a twice continuously 
differentiable displacement field on B. This paper concerns 
the following questions: Is there a linear elastic material such 
that u satisfies the equilibrium equation in the absence of body 
forces if B is homogeneous and composed of this material? If 
so, what is the totality of all such materials? If there is such a 
material, then the material will be said to sustain the 
deformation. 

1 Method 
It will be assumed that the only eligible materials are 

characterized by 

Lijkltkl> 

tij=-Y(Ui,j + uj,i), 

(1) 

(2) 

(3) <-ijkl ~ Ljikl - <-ijlk — cklij-

Under the assumption that the symmetries in equation (3) 
hold, it is well known that there are at most 21 independent 
elastic constants. These will be referred to using the Voigt 
notation: C n = c l u l , Cl2 = c1122, C13 = c1133, C14 = c1123, 
Cl5 = C1131> Cl6 = c1112> £-21 = C2211' • • • > C66> = C1212- By 
(3),C,j = Cj„I.=l,...,6,J=l,...,6. 

In the absence of body forces, the equilibrium equation is 

°tu = 0- (4) 
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Fig. 7 Velocity fields at y = 1 for the staggered tube bank; sL = s r = 40 
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a weak dependence on the transverse spacing, sT, compared 
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Nu0=1.13Ci?e2;m a xPr^ 
7V>10 
2000 <Red<mm< 40,000 
Pr>0.7 

(13) 
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effect, such as boundary layer separation and wake interac
tions, have to be considered in the flow field. Using the ex
pressions for u and v given by equations (10) and (12), the 
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In terms of the 21 elastic constants for a homogenous body, 
the /' = 1 equation is 

CuNin+Cl2Nm + CnNm + 2CuN2il + 2Ci5N3n 

+ 2C16iV121 + C6lNm + C62N222 + CaNi32 + 2C64N232 

+ 2CaN3l2 + 2Cf6Nm + CslNll 

+ 2C«. . N 2 3 3 + 2 C 5 5 / V 3 1 3 + 2 C 5 6 A ? 1 2 = 0 (5) 

for all points in the region, where Nuk are the components of 
the tensor field of order 3 defined by NiJk = e,^. Similar forms 
of the equilibrium equation hold for i = 2, 3. Since u is given 
everywhere in the region, the Nijk are known. For fixed x, the 
three equations of the form (5) comprise a homogeneous 
linear algebraic system in the 21 unknowns, C u , . . . , C66. 
This system may be written as 

[Z?(x)]C = 0 (6) 

where [E(x)] is the 3x21 matrix of coefficients from the 
system and C = col(Cu , C12 C66). Let R2[ denote the 
21-dimensional vector space consisting of column vectors of 
21 real numbers. Let an orthonormal basis for R2] be given by 
e„ = col(l, 0, 0, . . . , 0), . . . , e66 = col(0, 0, 0, . . . , 1) 
where the basis vectors are labeled according to the Voigt 
notation. 

Let Z be the set of all vectors C which satisfy (6) for all x. 
Thus Z consists of the moduli of all materials which sustain 
the deformation. If we choose any two vectors in Z, then any 
linear combination of these vectors is also in Z since (6) is a 
linear system. Thus Z is a subspace of R21. The problem may 
be regarded as that of finding the dimension of Z and finding 
a basis for Z. 

The following describes a method for finding Z for a gi-'en 
deformation. The method relies partially on a numeric;*! 
method. First, note that if a candidate for Z is given, it is 
essentially trivial to confirm whether or not each vector in this 
set sustains the deformation. This is merely a matter of confir
ming (6) for all x and for each basis vector in the set. The 
algorithm is as follows: 

Step 0. Choose arbitrarily n points x1, . . . , x" in B, 
where n is any positive integer. 

Step 1. Let Z" be the subspace of R21 containing all vec
tors C which satisfy (6) at x = x ' , . . . , x". In order to find Z", 
form the following linear algebraic system: 

[£(x')r 
[£(x2)] 

L4]C = 0, [A] = 

.[£(x»)]. 

(7) 

[A] is a In x 21 matrix. Z" consists of all solutions to (7). All 
such solutions may be found numerically by the technique 
known as singular value decomposition (Press et al., 1986). 
The result of application of this method is the dimension of Z" 
and a basis in R1[ which spans Z". 

Step 2. Test all basis vectors for Z" for whether or not 
they solve (6) for all x. If they do, then the problem is solved, 
and Z = Z". If some basis vector fails to solve (6) for some 
point in B, let x" + 1 be any point at which such failure occurs. 
Replace n by n + 1 and go back to Step 1. 

Note that the dimension of Z"+ 1 must be less than the 
dimension of Z". Therefore the iteration must converge within 
21 passes. If Z" = (0) for some n, then there are no materials 
which sustain the deformation. 

Any positive n may be used to start the iteration, but a great 
deal of effort is saved by an advantageous choice. Experience 
has shown that n > 7 works best, and if the x" are chosen at 
random, convergence is usually obtained on the first pass. 

Let Z be the orthogonal complement of Z, consisting of all 
vectors in R21 which are orthogonal to every vector in Z. Let L 
be the dimension of Z and let L be the dimension of Z. Then 
L = 2 1 - L . Let C<", C<2\ . . . , C(L» be a basis for Z. Every 
linear combination of these basis vectors represents a material 
which sustains the deformation. Let C(1), C<2), . . . , C<£) be a 
basis for Z. Note that an interpretation of L is that there are L 
restrictions on the moduli of the materials which sustain the 
deformation. This follows because a material with moduli C 
sustains the deformation if and only if C-C(1) = OC<2) = 
. . . =C-C(L) = 0. 

2 Homogeneous Deformations 
As an application of the above section, assume that u, = 

HjjXj for some nine constants Hy. Then the strain tensor e,-,- is 
constant, so Nijk = 0. Therefore [E(x)] = [0] for all x. Trivally, 
in this case L = 21, and any homogeneous linear elastic 
material sustains the deformation. The same result holds for 
nonlinear elastic materials as well: any compressible material 
sustains any homogeneous deformation. 

The following converse of the last result also holds in both 
linear and finite elasticity: If a deformation is sustained by 
every elastic material, then the deformation is homogeneous. 
This may be proved for linear elasticity by requiring equation 
(6) to hold for each of the choices C = e n , C = e12, 
. . . , C = e66. These various choices force each of the NjJk to 
vanish, proving that the deformation is homogeneous. Related 
(and stronger) results in finite elasticity were established by 
Ericksen (1955) and Shield (1971). However, neither the linear 
nor the nonlinear version is true if one considers only isotropic 
incompressible materials (Ericksen, 1954). 

3 Quadratic Deformations 
A useful class of deformations consists of those in which 

each component of displacement is expressible as a quadratic 
--M, ijkA for some 27 constants M!jk. This inform in x, i.e., ut 

means that each component of e,-,- varies linearly with x. 
Hence, NjJk (x) and [£(x)] are independent of x and Z>18 . 
One such field will now be examined in detail. 

Assume that the displacement field is 

u1 = 0, u2 - 2Tx,x,, u-, = 2Tx?x> (8) 

for all x in B where T is some nonzero constant. The only 
nonzero components of Nj,k are Nm = Nin = - T, Nn2 = 
N3n = T. A field of the form (8) provides a solution to the 
problem of the torsion of a homogeneous isotropic linear 
elastic rod of constant circular cross-section. 

The analysis just described yields L = 19 and a basis for Z is 
provided by 

C<" = e u 

C<2> = e 1 2 

C<3» = e 1 3 

C(4> = e 1 4 

C<5> = 6,5 

C<6> = e 1 6 

C<8> = e 2 

C<9> = e 2 

C<10> = e,, 

C<1 3 ' = e , 

C (14 ) 

(9) 

CO*) 

C (16 ) 
c26 ^' ' '- e 5 6 

C<»> = e 3 3 C<"> = e 6 6 

C < 1 2 > = e 3 4 C<18> = e 2 5 + e 4 6 

C<19) = e 3 6 + e 4 5 . 
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Also L = 2 and a basis for Z 

C"» = e, e46 C<2>: (10) 

Thus, the only restrictions on the material properties are 
C25 = CA6 and C36 = C45. For anisotropic materials, this 
displacement field does not, in general, solve the torsion 
problem for a circular rod, because the traction-free condition 
on the lateral surface may not be satisfied. 

4 Arbitrary Radial Deformations 

Suppose that there is some spherical coordinate system in 
which a deformation is described by ur(r, 6, 4>)=f(r), 
ue = u,j, = 0, where/is a smooth function. In rectangular coor
dinates, this is ut =f(.r)Xj/r, r= Ixl. One finds 

NUk = r-3(rf (r) - /( /•)) (x^+Xjd^+x^j) 

+ r-5(r2f"(r)-3rf'(r) + 3f(r))xiXjXk, r>0. (11) 

There are two special cases. First, the case/(r) = ar, where a 
is a constant, is a homogeneous deformation. Hence L = 21 
and there are no restrictions on the moduli. The second is 
/(/•) =ar~2, which will be discussed next. 

After carrying out the analysis for an arbitrary / other than 
these special cases one finds that L = 6 and a basis for Z is 
given by 

C<" = 2e 1 2 -e 6 6 C<3> = 2e 2 3 -e 4 4 C<5>=2e25-e< 
C<2> = 2e 1 3 -e 5 5 C<4>=2e14-e56 C<6>=2e36-e4 

(12) 

The equilibrated stress fields arising from the deformation of 
the materials in this Z are by no means trivial, nor are they 
radially symmetric. It is perhaps surprising that there are any 
materials which can sustain an arbitrary radial deformation. 

For the special case / ( / • )= ar ~ 2, a ̂  0, one finds L = 7 and 
the basis for Z given in (12) is augmented by 

C(7> = 5(e1 1+e2 2+e3 3) + 2(e44 + e55+e66) + e l2 + e2 3+e1 3 . (13) 

This special case is sustained by an isotropic material, which 
may be represented by 

c = _X + 2^ c ( 7 ) + iX- i i ( c ( 1 ) + c(2) + c ( 3 ) ) (14) 

where A and fi are the Lame1 moduli. Applications of this 
deformation include the Lame1 problem. 

5 A Nonsustainable Deformation 
It is easy to find deformations which are not sustained by 

any material. An example is the following: 

Ml =X\X2X1 ^U2~X\X2XT, iUl—x\x2xl • (15) 

If the analysis is carried out for this deformation, one finds 
L = 0, Z contains only the null vector, and Z-R2X. 

6 Discussion 
Evidently L, the dimension of Z, is related to the degree of 

symmetry present in a deformation. Perhaps it could be ex
ploited in quantifying this property. 

The issue discussed in this note may have application to the 
design of experiments for the testing of anisotropic materials. 
Such an experiment might, for example, require all materials 
to undergo the same deformation in response to prescribed 
displacement boundary conditions. 
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The Normality Rule in Linear Elastic Bifur
cation Problems 

John Roorda5 and Robert Maaskant5 

An interesting and potentially useful analogy exists between 
plasticity theory and its yield surfaces, and elastic stability 
theory of the title problem with its stability boundary. Of par
ticular interest in this regard are the convexity properties of 
these surfaces and their associated normality conditions. 

In plasticity theory the normality condition leads to a useful 
"flow law" based on an assumed convexity of the yield sur
face. In brief, stress combinations (ay) are elastic, plastic, or 
nonexistent depending on the value of a function F(rjy) which, 
when it takes on a critical value, represents the yield surface. It 
is possible to express the "flow law" algebraically as 
efj = ndF/do-jj, where ef is the plastic part of the strain rate and 
fx. is an arbitrary positive scalar. In regions where the yield sur
face is differentiable, a one-to-one correspondence is 
established between stress and strain rate direction. At corners 
or vertices the strain rate vector may have any direction within 
the fan or cone defined by the normals of the contiguous 
surfaces. 

A close parallel to the aforementioned ideas is found in con
nection with linear elastic structures that become unstable 
through bifurcation under multiple independent loads. The 
entirety of the critical load combinations associated with an 
initial loss of stability is called the stability boundary. The 
region of stability bounded by this curve has been shown to be 
convex if there are no pre-buckling deformations, the loads 
are conservative, and the equilibrium equations are linear in 
the loads (Papkovich, 1963; Renton, 1967). A proof for 
discrete systems and a variation of it for vibrating systems are 
presented by Huseyin (1975) and Huseyin and Roorda (1971). 
The stability boundary of a linear bifurcating elastic system is 
generally an open surface with no critical values pres
ent in regions of load space where the structural elements are 
placed in tension. 

Let the independent loads on the structure be denoted by /?,-, 
(/'= 1, 2, 3, . . . , m), and let the corresponding displacement of 
a loaded point, in the direction of the load, be given by e ;. The 
fundamental and buckled components of the corresponding 
displacements, taken together, make up the total displacement 

e, = ef + e?. (1) 

The stability boundary can generally be expressed in terms of 
the independent loads as 

*(P,) = 0. (2) 

The existence of a normality condition between the stability 
boundary and the buckled components of the corresponding 
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Also L = 2 and a basis for Z 

C"» = e, e46 C<2>: (10) 
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on the lateral surface may not be satisfied. 

4 Arbitrary Radial Deformations 

Suppose that there is some spherical coordinate system in 
which a deformation is described by ur(r, 6, 4>)=f(r), 
ue = u,j, = 0, where/is a smooth function. In rectangular coor
dinates, this is ut =f(.r)Xj/r, r= Ixl. One finds 

NUk = r-3(rf (r) - /( /•)) (x^+Xjd^+x^j) 

+ r-5(r2f"(r)-3rf'(r) + 3f(r))xiXjXk, r>0. (11) 
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the materials in this Z are by no means trivial, nor are they 
radially symmetric. It is perhaps surprising that there are any 
materials which can sustain an arbitrary radial deformation. 

For the special case / ( / • )= ar ~ 2, a ̂  0, one finds L = 7 and 
the basis for Z given in (12) is augmented by 

C(7> = 5(e1 1+e2 2+e3 3) + 2(e44 + e55+e66) + e l2 + e2 3+e1 3 . (13) 

This special case is sustained by an isotropic material, which 
may be represented by 

c = _X + 2^ c ( 7 ) + iX- i i ( c ( 1 ) + c(2) + c ( 3 ) ) (14) 

where A and fi are the Lame1 moduli. Applications of this 
deformation include the Lame1 problem. 

5 A Nonsustainable Deformation 
It is easy to find deformations which are not sustained by 

any material. An example is the following: 

Ml =X\X2X1 ^U2~X\X2XT, iUl—x\x2xl • (15) 

If the analysis is carried out for this deformation, one finds 
L = 0, Z contains only the null vector, and Z-R2X. 

6 Discussion 
Evidently L, the dimension of Z, is related to the degree of 

symmetry present in a deformation. Perhaps it could be ex
ploited in quantifying this property. 

The issue discussed in this note may have application to the 
design of experiments for the testing of anisotropic materials. 
Such an experiment might, for example, require all materials 
to undergo the same deformation in response to prescribed 
displacement boundary conditions. 
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established between stress and strain rate direction. At corners 
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A close parallel to the aforementioned ideas is found in con
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through bifurcation under multiple independent loads. The 
entirety of the critical load combinations associated with an 
initial loss of stability is called the stability boundary. The 
region of stability bounded by this curve has been shown to be 
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are conservative, and the equilibrium equations are linear in 
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Fig. 1 Experimental lest models: (a) Two-member frame and 
(b) three-member frame 

displacements has been formally established (Huseyin, 
Masur, 1972), i.e., 

-fir 

1975; 

(3) 

The negative sign in equation (3) is required because $(p,) 
derives from the second variation of potential energy, which 
decreases through the stability boundary. The "bifurcation 
flow law" of equation (3) indicates that the vector ef, when 
suitably projected into the load (p,) subspace, is orthogonal to 
the stability boundary in the direction of the outward normal 
at the point where the load "ray" touches the boundary. 

The bifurcation flow law, being rooted in the convexity of 
the stability boundary with its normality condition, can be in
terpreted in terms of elastic post-buckling work. The actual 
load vector, i.e., the vector to a point where the buckled com
ponent of the corresponding displacement vector is normal to 
the stability boundary, yields the maximum value of external 
post-buckling work. In other words, if p is the correct load 
vector to be associated with the displacement vector e* and p ' 
is any other load vector which lies inside or on the stability 
boundary, then p'eb>p'•eb. Simply put, the rate at which a 
bifurcating elastic structure absorbs strain energy is 
maximized. 

Experiments 
Some experimental evidence is now presented to cor

roborate the properties of convexity and normality in bifur
cating elastic systems. Two different model frames, made of 
high strength steel members, were used. 

(a) Two-Member Frame (Fig. 1(a)). Both members in this 
frame were 604.6 mm long, 25.4 mm wide, and 1.6 mm thick, 
and were rigidly connected at right angles at joint 1, with a 
clamped support at 3 and a pinned support at 2. 

(b) Three-Member Frame (Fig. 1(b)). The members were 
connected in a common rigid joint at 1 with 45 deg subtended 
between them. Members 1-2 and 1-4 were 25.4 mm wide and 
1.6 mm thick, and member 1-3 was 25.4 mm wide and 2.0 mm 
thick. The length of members 1-2 and 1-3 was 604.6 mm, and 
that of member 1-4 was 427.5 mm. The model had a clamped 
support at 3 and pin supports at 2 and 4. 

Each frame, being fixed on a supporting structure mounted 
on a shaft to allow rotation of the frame to achieve different 
loading vectors, was loaded vertically at the rigid joint 
through a knife edge and via a long wire attached by means of 
a loading nut to a proving ring fixed to a firm base. The ver
tical and horizontal movements of the loaded joint were 
measured by means of displacement transducers attached to 
the knife edge, which was seated in a horizontally adjustable 
V-groove to allow the introduction of a small load eccentricity 
to offset any initial geometrical shape imperfections present in 
the model frame. 

Tests were done for several loading vectors, each vector pro
ducing a different point on the stability boundary of the 
system. Two directions of buckling are possible at the critical 
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Fig. 2 Typical test measurements for the three-member frame: 
(a) applied load versus vertical deflection of the loaded joint and 
(b) horizontal versus vertical joint displacements 

load, represented by clockwise and counterclockwise joint 
rotation. At the critical load, a perfect frame is equally able to 
buckle in either direction. To compensate for the initial 
geometrical imperfections in the frame, the eccentricity of the 
load was adjusted to achieve a near perfect situation in which 
the effect of the load eccentricity more or less cancelled the op
posing effect of the initial geometrical imperfections. The load 
was applied in suitable increments along the natural load path. 
After completion of the natural buckling path, the model was 
manually rotated into the opposite buckling direction to come 
to rest on the complementary path after suitable adjustment of 
the load. Readings along this path were then recorded. Four to 
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Fig. 3 Experimental stability boundary and corresponding buckling 
displacement vectors for the two-member frame 

six tests were done for each load vector, each test yielding load 
and displacement measurements for both buckling directions. 

The results of a typical test on the three-member frame are 
shown in Fig. 2. Some deflections occur before the critical 
load is reached. These may be attributed to settling in of the 
knife edge and supports under load, elastic axial deformation 
of the members, and a small amount of pre-buckling axial 
deformation due to out-of-straightness of the members and 
load eccentricity. Figure 2(a) indicates that the initial post-
buckling deflections grow at almost constant load. Two 
branches are evident in post-buckling: one obtained from 
the natural loading path and the other from the complemen
tary path. The experimental critical load is taken to be the 
average load for the two branches. Figure 2(b) shows the 
corresponding buckled branches in deflection space. 
Theoretically, for a structure without imperfections, these 
should coincide in location and slope, at least initially, and 
veer outward in a cusplike fashion due to nonlinear post-
buckling behavior as the structure continues to buckle. The 
presence of imperfections, however, causes these branches to 
separate in practice, each with a slightly different slope. The 
average slope is taken to represent the vector of post-buckling 
deflections for the corresponding ideal system. 

Resolving the experimental, vertically applied load into two 
components directed along the perpendicular members of the 
frame (see Fig. 1), and plotting the experimental critical values 
in load space (pi versus p2), gives the plot shown in Fig. 3 for 
the two-member frame and Fig. 4 for the three-member 
frame. These experimental points represent the average critical 
value measured in 4 to 6 separate tests for a number of dif
ferent load vectors obtained by rotating the model frame to 
specific angles. The curve drawn through these points 
represents the inferred experimental stability boundary for the 
perfect structure. In both experiments the stability boundary 
appears to be smoothly curved and the region of stability ap
pears to be convex. 

In a similar way the averaged buckling displacement vectors 
are resolved into components e, and e2 (see Fig. 1). Superim
posing the resultant displacement vectors on pt-p2 load 
space at the corresponding experimental points on the stability 
boundary gives the vector directions shown in Figs. 3 and 4. 
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Fig. 4 Experimental stability boundary and corresponding buckling 
displacement vectors for the three-member frame 

For both test models the experimental displacement vectors 
are practically normal to the experimentally obtained stability 
boundary, in harmony with the theory. 

Concluding Remarks 
The concepts of convexity and normality as they apply to 

bifurcating linear elastic structures have been presented in 
analogy with similar ideas in plasticity theory. The bifurcation 
flow law, or normality rule, which is rooted in these concepts 
has been corroborated in a conclusive manner by experimental 
evidence obtained from elastic buckling tests on continuous 
steel frames. The analogue found in plasticity theory, where 
convexity and the normality rule have provided a solid foun
dation for limit theorems, requires no further elaboration. 
How useful similar concepts will be in elastic buckling theory 
remains to be seen. 
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Column Buckling When Support Stiffens 
Under Compression 

2 0 

R. H. Plaut6 

Introduction 
The base of a column is often modeled as a pinned support 

with a rotational spring having stiffness coefficient K. For 
ideal pinned or clamped conditions, K=Q or K=<x, respec
tively. In an actual column, A'may vary as the column rotates 
(e.g., see Picard and Beaulieu, 1985), and this variation may 
have a significant effect on the behavior of the column (e.g., 
see Souza, 1987). 

If the column is subjected to a compressive load P, the sup
port condition may also depend on P. This has been 
demonstrated in recent experiments reported by Picard and 
Beaulieu (1985) and Picard, Beaulieu, and Perusse (1987), in 
which the resistance to rotation increased as P increased. The 
effect of such support stiffening on column buckling is ex
amined here. In this initial analysis, K is assumed to increase 
linearly with P. Results are presented for columns whose top 
ends are either pinned or clamped. 

Analysis 
Consider a uniform elastic column with bending stiffness EI 

and length L. It is subjected to a vertical load P at the top. The 
base is pinned and has a rotational spring with stiffness K. The 
column deflection is denoted W(X), 0<X<L. 

Define the nondimensional quantities 

p = PL2/EI, q = vp, k = KL/EI, 

x = X/L, w = W/L. (1) 

The equilibrium equation is 

w""(x)+pw"(x) = 0 (2) 

with boundary conditions 

w(0) = 0, w"(0)-kw'(0) = 0, w(l) = 0, 

and either w "(1) = 0 or w'(l) = 0 (3) 

depending if the top is pinned or clamped. 
The characteristic equation for the buckling loads is given 

by (Simitses, 1976) 

(q2 + A:)sin<7 - kqcosq = 0 (4) 

if the top is pinned, and 

(l-k)qsinq-(q2 + 2k)cosq + 2k = 0 (5) 

if the top is clamped. The nondimensional critical load pCR is 
the square of the lowest positive root q of the characteristic 
equation. 

Assume, for simplicity, that the support stiffens according 
to the linear relation 

k = !3 + yp (6) 

where /3>0, 7 > 0 . Equation (6) is substituted into (4) and (5), 
and critical loads are determined numerically. Results are 
presented in Figs. 1 and 2, where the initial stiffness /3 is fixed 
and the critical load is plotted as a function of the stiffening 
parameter y. If the top is pinned (Fig. 1), pCR = ir2 when 
0 = 7 = 0, and pCR~20.2 as j3-><» or 7—00. If the top is 
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Fig. 2 Critical loads for columns clamped at the top 

clamped (Fig. 2), pCR=20.2 when (3 = 7 = 0, andpc* —4TT2 as 
/3— 00 or 7—00. These results demonstrate quantitatively how 
column buckling loads are affected by supports which stiffen 
when they are compressed. 
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Shock and Vibration Handbook, 3rd ed., edited by C. M. 
Harris. McGraw-Hill Book Co., New York, 1988. 1312 Pages. 
Price: $76.50. 

REVIEWED BY C. W. BERT1 

Since the appearance of the first edition, edited by C. M. 
Harris and C. E. Crede, in 1961, this handbook has become 
well established as " the" handbook of the whole field of 
shock and vibration. The present edition contains the same 
number of chapters (44) as did the second edition (1976). Of 
these, thirteen are completely new, seven are completely 
rewritten versions, six are minor revisions, and nineteen are 
essentially the same as in the second edition. In a sense, the ap
pearance of whole new chapters (and vanishing of old ones) is 
a measure of the dynamicism of the field. New topics to which 
whole new chapters are devoted include modal analysis, 
ground motion-induced vibration, vibration induced by fluid 
flow and by wind, piezoelectric/piezoresistive transducers, 
signal analyzers, special purpose transducers, condition 
monitoring of machinery, and seismic qualification of 
equipment. 

This book ranges the gamut from fundamental theory to 
analysis, design, application, standardization, instrumenta
tion, and data reduction. It is intended primarily as a working 
reference book for engineers and scientists in the acoustic, 
aerospace, chemical, civil, electrical/electronic, and manufac
turing fields. This reviewer believes that it fulfills this objec
tive very well, especially for those just entering the shock and 
vibration field. It also may be useful as a supplemental 
reference for advanced courses in shock and/or vibration. 

Nonlinear Water Waves, edited by K. Horikawa and 
H. Maruo. (Proceedings of IUTAM Symposium, Tokyo, 
Japan, August 25-28, 1987), Springer-Verlag, New York, 
1987. 466 Pages. 

REVIEWED BY A. D. D. CRAIK2 

naturally large, but numbers from the U.S.A. (8) and U.K. (2) 
were surprisingly small. 

In the editors' words: "The Symposium has intended to 
provide a wide scope of analytical and numerical methods as 
well as experimental studies for the analysis of the nonlinear 
phenomena related to water waves the scope of the 
presented papers includes the following topics: (1) Theoretical 
and experimental studies of nonlinear water waves, (2) 
Nonlinear instability and deformation of water waves, (3) 
Wave breaking, (4) Nonlinear wave-current interaction, (5) 
Nonlinear water waves around structures and ships, (6) Wave-
body interaction, and (7) Nonlinear internal waves." 

The keynote lectures were by C. C. Mei on nonlinear dif
fraction effects, D. H. Peregrine on modeling of unsteady and 
breaking waves, and O. M. Faltinsen on nonlinear interactions 
between waves and bodies. The emphasis on nonlinear effects 
reflects recent theoretical and computational advances. 
These, in turn, are mainly motivated by the need to under
stand and predict the complex interactions of waves with 
ships, moored structures, and underwater topography. 

As a whole, the contributions are an interesting sample of 
current research, including such topics as shallow-water solu
tions, standing waves in closed basins, breaking and spilling 
waves, resonant interactions, wave propagation over bodies 
and varying topography, second-order wave-induced forces 
on bodies, nonlinear ship waves, and simulation of wave spec
tra. With few exceptions, each paper is restricted in length to 
eight pages: Inevitably, some are tantalizingly brief and 
others are mercifully so. Equally inevitably, many have been, 
or will be, published in greater detail in referred journals. One 
paper contains the first recorded occurrence (and hopefully 
the last!) of the word "serendipiditiously." 

The usefulness of this collection is transient: For a few 
years it will provide a convenient, though incomplete and 
disconnected, survey of current strands of water-wave 
research, of use to specialists in this and related areas. It 
would be a worthwhile, but not indispensible, addition to 
research libraries. I, for one, have learned something from 
reading it. 

This volume records the proceedings of a IUTAM Sym
posium on Nonlinear Water Waves, comprising three 
"keynote lectures", 33 contributed papers, and 15 posters. 
Authors' camera-ready contributions, in the usual variety of 
typefaces, are acceptably reproduced; there is a brief editors' 
introduction and a full list of participants. The wide interna
tional representation included many leading water-wave 
researchers: The number of Japanese participants was 
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Micromechanics of Defects in Solids, Second Rev. Ed., by 
T. Mura, Martinus Nijhoff Publishers, Boston, MA, 1987. 
587 Pages. 

REVIEWED BY T. C. T. TING3 

This is a very well written book. The central theme of the 
book is the concept of eigenstrain, originally due to Eshelby, 
which has been systematically employed by Professor Mura in 
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